Abstract:We leverage generative large language models for language learning applications, focusing on estimating the difficulty of foreign language texts and simplifying them to lower difficulty levels. We frame both tasks as prediction problems and develop a difficulty classification model using labeled examples, transfer learning, and large language models, demonstrating superior accuracy compared to previous approaches. For simplification, we evaluate the trade-off between simplification quality and meaning preservation, comparing zero-shot and fine-tuned performances of large language models. We show that meaningful text simplifications can be obtained with limited fine-tuning. Our experiments are conducted on French texts, but our methods are language-agnostic and directly applicable to other foreign languages.
Abstract:Multimodal AI has demonstrated superior performance over unimodal approaches by leveraging diverse data sources for more comprehensive analysis. However, applying this effectiveness in healthcare is challenging due to the limited availability of public datasets. Federated learning presents an exciting solution, allowing the use of extensive databases from hospitals and health centers without centralizing sensitive data, thus maintaining privacy and security. Yet, research in multimodal federated learning, particularly in scenarios with missing modalities a common issue in healthcare datasets remains scarce, highlighting a critical area for future exploration. Toward this, we propose a novel method for multimodal federated learning with missing modalities. Our contribution lies in a novel cross-modal data augmentation by retrieval, leveraging the small publicly available dataset to fill the missing modalities in the clients. Our method learns the parameters in a federated manner, ensuring privacy protection and improving performance in multiple challenging multimodal benchmarks in the medical domain, surpassing several competitive baselines. Code Available: https://github.com/bhattarailab/CAR-MFL
Abstract:Coronary Artery Diseases(CADs) though preventable are one of the leading causes of death and disability. Diagnosis of these diseases is often difficult and resource intensive. Segmentation of arteries in angiographic images has evolved as a tool for assistance, helping clinicians in making accurate diagnosis. However, due to the limited amount of data and the difficulty in curating a dataset, the task of segmentation has proven challenging. In this study, we introduce the idea of using pseudolabels as a data augmentation technique to improve the performance of the baseline Yolo model. This method increases the F1 score of the baseline by 9% in the validation dataset and by 3% in the test dataset.
Abstract:Coronary Artery Diseases although preventable are one of the leading cause of mortality worldwide. Due to the onerous nature of diagnosis, tackling CADs has proved challenging. This study addresses the automation of resource-intensive and time-consuming process of manually detecting stenotic lesions in coronary arteries in X-ray coronary angiography images. To overcome this challenge, we employ a specialized Convnext-V2 backbone based Mask RCNN model pre-trained for instance segmentation tasks. Our empirical findings affirm that the proposed model exhibits commendable performance in identifying stenotic lesions. Notably, our approach achieves a substantial F1 score of 0.5353 in this demanding task, underscoring its effectiveness in streamlining this intensive process.
Abstract:We use large language models to aid learners enhance proficiency in a foreign language. This is accomplished by identifying content on topics that the user is interested in, and that closely align with the learner's proficiency level in that foreign language. Our work centers on French content, but our approach is readily transferable to other languages. Our solution offers several distinctive characteristics that differentiate it from existing language-learning solutions, such as, a) the discovery of content across topics that the learner cares about, thus increasing motivation, b) a more precise estimation of the linguistic difficulty of the content than traditional readability measures, and c) the availability of both textual and video-based content. The linguistic complexity of video content is derived from the video captions. It is our aspiration that such technology will enable learners to remain engaged in the language-learning process by continuously adapting the topics and the difficulty of the content to align with the learners' evolving interests and learning objectives.
Abstract:With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, and have proposed multiple methods for debiasing them. However, in such studies, the focus has been on debiasing techniques, while the relations to be debiased are specified manually by the user. As manual specification is itself susceptible to human cognitive bias, there is a need for a system capable of quantifying and exposing biases, that can support more informed decisions on what to debias. To address this gap in the literature, we describe a framework for identifying biases present in knowledge graph embeddings, based on numerical bias metrics. We illustrate the framework with three different bias measures on the task of profession prediction, and it can be flexibly extended to further bias definitions and applications. The relations flagged as biased can then be handed to decision makers for judgement upon subsequent debiasing.
Abstract:The current expansion of theory and research on artificial intelligence in management and organization studies has revitalized the theory and research on decision-making in organizations. In particular, recent advances in deep learning (DL) algorithms promise benefits for decision-making within organizations, such as assisting employees with information processing, thereby augment their analytical capabilities and perhaps help their transition to more creative work.
Abstract:Knowledge Graphs (KG) are gaining increasing attention in both academia and industry. Despite their diverse benefits, recent research have identified social and cultural biases embedded in the representations learned from KGs. Such biases can have detrimental consequences on different population and minority groups as applications of KG begin to intersect and interact with social spheres. This paper aims at identifying and mitigating such biases in Knowledge Graph (KG) embeddings. As a first step, we explore popularity bias -- the relationship between node popularity and link prediction accuracy. In case of node2vec graph embeddings, we find that prediction accuracy of the embedding is negatively correlated with the degree of the node. However, in case of knowledge-graph embeddings (KGE), we observe an opposite trend. As a second step, we explore gender bias in KGE, and a careful examination of popular KGE algorithms suggest that sensitive attribute like the gender of a person can be predicted from the embedding. This implies that such biases in popular KGs is captured by the structural properties of the embedding. As a preliminary solution to debiasing KGs, we introduce a novel framework to filter out the sensitive attribute information from the KG embeddings, which we call FAN (Filtering Adversarial Network). We also suggest the applicability of FAN for debiasing other network embeddings which could be explored in future work.
Abstract:Augmentation of disease diagnosis and decision-making in healthcare with machine learning algorithms is gaining much impetus in recent years. In particular, in the current epidemiological situation caused by COVID-19 pandemic, swift and accurate prediction of disease diagnosis with machine learning algorithms could facilitate identification and care of vulnerable clusters of population, such as those having multi-morbidity conditions. In order to build a useful disease diagnosis prediction system, advancement in both data representation and development of machine learning architectures are imperative. First, with respect to data collection and representation, we face severe problems due to multitude of formats and lack of coherency prevalent in Electronic Health Records (EHRs). This causes hindrance in extraction of valuable information contained in EHRs. Currently, no universal global data standard has been established. As a useful solution, we develop and publish a Python package to transform public health dataset into an easy to access universal format. This data transformation to an international health data format facilitates researchers to easily combine EHR datasets with clinical datasets of diverse formats. Second, machine learning algorithms that predict multiple disease diagnosis categories simultaneously remain underdeveloped. We propose two novel model architectures in this regard. First, DeepObserver, which uses structured numerical data to predict the diagnosis categories and second, ClinicalBERT_Multi, that incorporates rich information available in clinical notes via natural language processing methods and also provides interpretable visualizations to medical practitioners. We show that both models can predict multiple diagnoses simultaneously with high accuracy.