Abstract:We leverage generative large language models for language learning applications, focusing on estimating the difficulty of foreign language texts and simplifying them to lower difficulty levels. We frame both tasks as prediction problems and develop a difficulty classification model using labeled examples, transfer learning, and large language models, demonstrating superior accuracy compared to previous approaches. For simplification, we evaluate the trade-off between simplification quality and meaning preservation, comparing zero-shot and fine-tuned performances of large language models. We show that meaningful text simplifications can be obtained with limited fine-tuning. Our experiments are conducted on French texts, but our methods are language-agnostic and directly applicable to other foreign languages.
Abstract:Toxic comment detection on social media has proven to be essential for content moderation. This paper compares a wide set of different models on a highly skewed multi-label hate speech dataset. We consider inference time and several metrics to measure performance and bias in our comparison. We show that all BERTs have similar performance regardless of the size, optimizations or language used to pre-train the models. RNNs are much faster at inference than any of the BERT. BiLSTM remains a good compromise between performance and inference time. RoBERTa with Focal Loss offers the best performance on biases and AUROC. However, DistilBERT combines both good AUROC and a low inference time. All models are affected by the bias of associating identities. BERT, RNN, and XLNet are less sensitive than the CNN and Compact Convolutional Transformers.