Abstract:The electrocardiogram (ECG) is a cost-effective, highly accessible and widely employed diagnostic tool. With the advent of Foundation Models (FMs), the field of AI-assisted ECG interpretation has begun to evolve, as they enable model reuse across different tasks by relying on embeddings. However, to responsibly employ FMs, it is crucial to rigorously assess to which extent the embeddings they produce are generalizable, particularly in error-sensitive domains such as healthcare. Although prior works have already addressed the problem of benchmarking ECG-expert FMs, they focus predominantly on the evaluation of downstream performance. To fill this gap, this study aims to find an in-depth, comprehensive benchmarking framework for FMs, with a specific focus on ECG-expert ones. To this aim, we introduce a benchmark methodology that complements performance-based evaluation with representation-level analysis, leveraging SHAP and UMAP techniques. Furthermore, we rely on the methodology for carrying out an extensive evaluation of several ECG-expert FMs pretrained via state-of-the-art techniques over different cross-continental datasets and data availability settings; this includes ones featuring data scarcity, a fairly common situation in real-world medical scenarios. Experimental results show that our benchmarking protocol provides a rich insight of ECG-expert FMs' embedded patterns, enabling a deeper understanding of their representational structure and generalizability.



Abstract:X-ray computed microtomography ({\mu}-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples. These images enable clinicians to examine internal anatomy and gain insights into the disease or anatomical morphology. However, extracting relevant information from 3D images requires semantic segmentation of the regions of interest, which is usually done manually and results time-consuming and tedious. In this work, we propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus. The framework employs an optimized 2D CNN architecture that can infer a 3D segmentation of the sample, avoiding the high computational cost of a 3D CNN architecture. We tackle the challenges of handling large and high-resoluted image data (over a thousand pixels in each dimension) and a small training database (only three samples) by proposing a standard protocol for data normalization and processing. Moreover, we investigate how the noise, contrast, and spatial resolution of the sample and the training of the architecture are affected by the reconstruction technique, which depends on the number of input images. Experiments show that our framework significantly reduces the time required to segment new samples, allowing a faster microtomography analysis of the Carassius auratus heart shape. Furthermore, our framework can work with any bio-image (biological and medical) from {\mu}-CT with high-resolution and small dataset size