Abstract:X-ray computed microtomography ({\mu}-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples. These images enable clinicians to examine internal anatomy and gain insights into the disease or anatomical morphology. However, extracting relevant information from 3D images requires semantic segmentation of the regions of interest, which is usually done manually and results time-consuming and tedious. In this work, we propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus. The framework employs an optimized 2D CNN architecture that can infer a 3D segmentation of the sample, avoiding the high computational cost of a 3D CNN architecture. We tackle the challenges of handling large and high-resoluted image data (over a thousand pixels in each dimension) and a small training database (only three samples) by proposing a standard protocol for data normalization and processing. Moreover, we investigate how the noise, contrast, and spatial resolution of the sample and the training of the architecture are affected by the reconstruction technique, which depends on the number of input images. Experiments show that our framework significantly reduces the time required to segment new samples, allowing a faster microtomography analysis of the Carassius auratus heart shape. Furthermore, our framework can work with any bio-image (biological and medical) from {\mu}-CT with high-resolution and small dataset size
Abstract:In the field of functional genomics, the analysis of gene expression profiles through Machine and Deep Learning is increasingly providing meaningful insight into a number of diseases. The paper proposes a novel algorithm to perform Feature Selection on genomic-scale data, which exploits the reconstruction capabilities of autoencoders and an ad-hoc defined Explainable Artificial Intelligence-based score in order to select the most informative genes for diagnosis, prognosis, and precision medicine. Results of the application on a Chronic Lymphocytic Leukemia dataset evidence the effectiveness of the algorithm, by identifying and suggesting a set of meaningful genes for further medical investigation.