Topic:Chemical Reaction Prediction
What is Chemical Reaction Prediction? Chemical reaction prediction is the process of predicting the outcome of chemical reactions using machine learning models.
Papers and Code
Nov 07, 2024
Abstract:Following the milestones in large language models (LLMs) and multimodal models, we have seen a surge in applying LLMs to biochemical tasks. Leveraging graph features and molecular text representations, LLMs can tackle various tasks, such as predicting chemical reaction outcomes and describing molecular properties. However, most current work overlooks the multi-level nature of graph features. The impact of different feature levels on LLMs and the importance of each level remain unexplored, and it is possible that different chemistry tasks require different feature levels. In this work, we first investigate the effect of feature granularity by fusing GNN-generated feature tokens, discovering that even reducing all tokens to a single token does not significantly impact performance. We then explore the effect of various feature levels on performance, finding that both the quality of LLM-generated molecules and performance on different tasks benefit from different feature levels. We conclude with two key insights: (1) current molecular Multimodal LLMs(MLLMs) lack a comprehensive understanding of graph features, and (2) static processing is not sufficient for hierarchical graph feature. Our code will be publicly available soon.
Via
Sep 26, 2024
Abstract:Real-world chemical processes often exhibit stochastic dynamics with non-trivial correlations and state-dependent fluctuations. However, most process models simply add stationary noise terms to a deterministic prediction, which can lead to inaccurate predictions. This work proposes using conditional normalizing flows as discrete-time models (DTMs) to learn the stochastic dynamics of chemical processes. Normalizing flows learn an explicit expression of the system states' probability density function (PDF) given prior states and control inputs. The resulting model naturally allows for formulating stochastic and probabilistic setpoint-tracking objectives and chance constraints. In applications to a continuous reactor and a reactor cascade, the normalizing flow yields stable simulations over long time horizons and high-quality results in stochastic and probabilistic MPC formulation for open-loop control. Furthermore, a chance-constrained optimization finds reliable startup controls for the reactor cascade with stochastic reactions. In conclusion, the conditional normalizing flow presents an excellent choice for modeling nonlinear stochastic dynamics.
* 13 pages, 7 Figures, 5 Tables
Via
Aug 19, 2024
Abstract:Retrosynthesis analysis is pivotal yet challenging in drug discovery and organic chemistry. Despite the proliferation of computational tools over the past decade, AI-based systems often fall short in generalizing across diverse reaction types and exploring alternative synthetic pathways. This paper presents BatGPT-Chem, a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction. Integrating chemical tasks via a unified framework of natural language and SMILES notation, this approach synthesizes extensive instructional data from an expansive chemical database. Employing both autoregressive and bidirectional training techniques across over one hundred million instances, BatGPT-Chem captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions and exhibiting strong zero-shot capabilities. Superior to existing AI methods, our model demonstrates significant advancements in generating effective strategies for complex molecules, as validated by stringent benchmark tests. BatGPT-Chem not only boosts the efficiency and creativity of retrosynthetic analysis but also establishes a new standard for computational tools in synthetic design. This development empowers chemists to adeptly address the synthesis of novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science. We release our trial platform at \url{https://www.batgpt.net/dapp/chem}.
Via
Aug 08, 2024
Abstract:Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
* 23 pages, 6 figures
Via
Jul 21, 2024
Abstract:High-throughput reaction condition (RC) screening is fundamental to chemical synthesis. However, current RC screening suffers from laborious and costly trial-and-error workflows. Traditional computer-aided synthesis planning (CASP) tools fail to find suitable RCs due to data sparsity and inadequate reaction representations. Nowadays, large language models (LLMs) are capable of tackling chemistry-related problems, such as molecule design, and chemical logic Q\&A tasks. However, LLMs have not yet achieved accurate predictions of chemical reaction conditions. Here, we present MM-RCR, a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR). To train MM-RCR, we construct 1.2 million pair-wised Q\&A instruction datasets. Our experimental results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets and exhibits strong generalization capabilities on out-of-domain (OOD) and High-Throughput Experimentation (HTE) datasets. MM-RCR has the potential to accelerate high-throughput condition screening in chemical synthesis.
Via
Jul 14, 2024
Abstract:A chemical reaction mechanism (CRM) is a sequence of molecular-level events involving bond-breaking/forming processes, generating transient intermediates along the reaction pathway as reactants transform into products. Understanding such mechanisms is crucial for designing and discovering new reactions. One of the currently available methods to probe CRMs is quantum mechanical (QM) computations. The resource-intensive nature of QM methods and the scarcity of mechanism-based datasets motivated us to develop reliable ML models for predicting mechanisms. In this study, we created a comprehensive dataset with seven distinct classes, each representing uniquely characterized elementary steps. Subsequently, we developed an interpretable attention-based GNN that achieved near-unity and 96% accuracy, respectively for reaction step classification and the prediction of reactive atoms in each such step, capturing interactions between the broader reaction context and local active regions. The near-perfect classification enables accurate prediction of both individual events and the entire CRM, mitigating potential drawbacks of Seq2Seq approaches, where a wrongly predicted character leads to incoherent CRM identification. In addition to interpretability, our model adeptly identifies key atom(s) even from out-of-distribution classes. This generalizabilty allows for the inclusion of new reaction types in a modular fashion, thus will be of value to experts for understanding the reactivity of new molecules.
* Accepted to 27th ECAI main track
Via
Aug 10, 2024
Abstract:Traditional top-down robotic design often lacks the adaptability needed to handle real-world complexities, prompting the need for more flexible approaches. Therefore, this study introduces a novel cellular plasticity model tailored for bottom-up robotic design. The proposed model utilizes an activator-inhibitor reaction, a common foundation of Turing patterns, which are fundamental in morphogenesis -- the emergence of form from simple interactions. Turing patterns describe how diffusion and interactions between two chemical substances-an activator and an inhibitor-can lead to complex patterns and structures, such as the formation of limbs and feathers. Our study extends this concept by modeling cellular plasticity as an activator-inhibitor reaction augmented with environmental stimuli, encapsulating the core phenomena observed across various cell types: stem cells, neurons, and muscle cells. In addition to demonstrating self-regulation and self-containment, this approach ensures that a robot's form and function are direct emergent responses to its environment without a comprehensive environmental model. In the proposed model, a factory acts as the activator, producing a product that serves as the inhibitor, which is then influenced by environmental stimuli through consumption. These components are regulated by cellular plasticity phenomena as feedback loops. We calculate the equilibrium points of the model and the stability criterion. Simulations examine how varying parameters affect the system's transient behavior and the impact of competing functions on its functional capacity. Results show the model converges to a single stable equilibrium tuned to the environmental stimulation. Such dynamic behavior underscores the model's utility for generating predictable responses within robotics and biological systems, showcasing its potential for navigating the complexities of adaptive systems.
* 15 pages, 7 figures, Living Machines 2024
Via
Jul 12, 2024
Abstract:Template-free SMILES-to-SMILES translation models for reaction prediction and single-step retrosynthesis are of interest for industrial applications in computer-aided synthesis planning systems due to their state-of-the-art accuracy. However, they suffer from slow inference speed. We present a method to accelerate inference in autoregressive SMILES generators through speculative decoding by copying query string subsequences into target strings in the right places. We apply our method to the molecular transformer implemented in Pytorch Lightning and achieve over 3X faster inference in reaction prediction and single-step retrosynthesis, with no loss in accuracy.
* 8 pages, 3 figures
Via
May 17, 2024
Abstract:Transformer-based encoder-decoder models have demonstrated impressive results in chemical reaction prediction tasks. However, these models typically rely on pretraining using tens of millions of unlabelled molecules, which can be time-consuming and GPU-intensive. One of the central questions we aim to answer in this work is: Can FlanT5 and ByT5, the encode-decoder models pretrained solely on language data, be effectively specialised for organic reaction prediction through task-specific fine-tuning? We conduct a systematic empirical study on several key issues of the process, including tokenisation, the impact of (SMILES-oriented) pretraining, fine-tuning sample efficiency, and decoding algorithms at inference. Our key findings indicate that although being pretrained only on language tasks, FlanT5 and ByT5 provide a solid foundation to fine-tune for reaction prediction, and thus become `chemistry domain compatible' in the process. This suggests that GPU-intensive and expensive pretraining on a large dataset of unlabelled molecules may be useful yet not essential to leverage the power of language models for chemistry. All our models achieve comparable Top-1 and Top-5 accuracy although some variation across different models does exist. Notably, tokenisation and vocabulary trimming slightly affect final performance but can speed up training and inference; The most efficient greedy decoding strategy is very competitive while only marginal gains can be achieved from more sophisticated decoding algorithms. In summary, we evaluate FlanT5 and ByT5 across several dimensions and benchmark their impact on organic reaction prediction, which may guide more effective use of these state-of-the-art language models for chemistry-related tasks in the future.
* Preprint
Via
Apr 15, 2024
Abstract:The task of chemical reaction predictions (CRPs) plays a pivotal role in advancing drug discovery and material science. However, its effectiveness is constrained by the vast and uncertain chemical reaction space and challenges in capturing reaction selectivity, particularly due to existing methods' limitations in exploiting the data's inherent knowledge. To address these challenges, we introduce a data-curated self-feedback knowledge elicitation approach. This method starts from iterative optimization of molecular representations and facilitates the extraction of knowledge on chemical reaction types (RTs). Then, we employ adaptive prompt learning to infuse the prior knowledge into the large language model (LLM). As a result, we achieve significant enhancements: a 14.2% increase in retrosynthesis prediction accuracy, a 74.2% rise in reagent prediction accuracy, and an expansion in the model's capability for handling multi-task chemical reactions. This research offers a novel paradigm for knowledge elicitation in scientific research and showcases the untapped potential of LLMs in CRPs.
Via