Abstract:Social interactions are fundamental to human life. The recent emergence of large language models (LLMs)-based virtual assistants has demonstrated their potential to revolutionize human interactions and lifestyles. However, existing assistive systems mainly provide reactive services to individual users, rather than offering in-situ assistance during live social interactions with conversational partners. In this study, we introduce SocialMind, the first LLM-based proactive AR social assistive system that provides users with in-situ social assistance. SocialMind employs human-like perception leveraging multi-modal sensors to extract both verbal and nonverbal cues, social factors, and implicit personas, incorporating these social cues into LLM reasoning for social suggestion generation. Additionally, SocialMind employs a multi-tier collaborative generation strategy and proactive update mechanism to display social suggestions on Augmented Reality (AR) glasses, ensuring that suggestions are timely provided to users without disrupting the natural flow of conversation. Evaluations on three public datasets and a user study with 20 participants show that SocialMind achieves 38.3% higher engagement compared to baselines, and 95% of participants are willing to use SocialMind in their live social interactions.
Abstract:In image editing tasks, high-quality text editing capabilities can significantly reduce human and material resource costs. Current methods rely heavily on training data based on OCR text segment detection, where the text is tightly aligned with the mask area. This reliance creates a strong dependency on the mask area and lacks modules for adjusting text spacing and size in various scenarios. When the amount of text to be edited does not match the modification area or when the mask area is too large, significant issues may arise. Furthermore, no existing methods have explored controllable style transfer for text editing.To address these challenges, we propose TextMaster, a solution capable of accurately editing text with high realism and proper layout in any scenario and image area. Our approach employs adaptive standard letter spacing as guidance during training and uses adaptive mask boosting to prevent the leakage of text position and size information. We also utilize an attention mechanism to calculate the bounding box regression loss for each character, making text layout methods learnable across different scenarios. By injecting high-resolution standard font information and applying perceptual loss in the text editing area, we further enhance text rendering accuracy and fidelity. Additionally, we achieve style consistency between the modified and target text through a novel style injection method. Extensive qualitative and quantitative evaluations demonstrate that our method outperforms all existing approaches.
Abstract:Anomaly detection is a critical task in industrial manufacturing, aiming to identify defective parts of products. Most industrial anomaly detection methods assume the availability of sufficient normal data for training. This assumption may not hold true due to the cost of labeling or data privacy policies. Additionally, mainstream methods require training bespoke models for different objects, which incurs heavy costs and lacks flexibility in practice. To address these issues, we seek help from Stable Diffusion (SD) model due to its capability of zero/few-shot inpainting, which can be leveraged to inpaint anomalous regions as normal. In this paper, a few-shot multi-class anomaly detection framework that adopts Stable Diffusion model is proposed, named AnomalySD. To adapt SD to anomaly detection task, we design different hierarchical text descriptions and the foreground mask mechanism for fine-tuning SD. In the inference stage, to accurately mask anomalous regions for inpainting, we propose multi-scale mask strategy and prototype-guided mask strategy to handle diverse anomalous regions. Hierarchical text prompts are also utilized to guide the process of inpainting in the inference stage. The anomaly score is estimated based on inpainting result of all masks. Extensive experiments on the MVTec-AD and VisA datasets demonstrate the superiority of our approach. We achieved anomaly classification and segmentation results of 93.6%/94.8% AUROC on the MVTec-AD dataset and 86.1%/96.5% AUROC on the VisA dataset under multi-class and one-shot settings.
Abstract:Large language models (LLMs) have the potential to transform digital healthcare, as evidenced by recent advances in LLM-based virtual doctors. However, current approaches rely on patient's subjective descriptions of symptoms, causing increased misdiagnosis. Recognizing the value of daily data from smart devices, we introduce a novel LLM-based multi-turn consultation virtual doctor system, DrHouse, which incorporates three significant contributions: 1) It utilizes sensor data from smart devices in the diagnosis process, enhancing accuracy and reliability. 2) DrHouse leverages continuously updating medical databases such as Up-to-Date and PubMed to ensure our model remains at diagnostic standard's forefront. 3) DrHouse introduces a novel diagnostic algorithm that concurrently evaluates potential diseases and their likelihood, facilitating more nuanced and informed medical assessments. Through multi-turn interactions, DrHouse determines the next steps, such as accessing daily data from smart devices or requesting in-lab tests, and progressively refines its diagnoses. Evaluations on three public datasets and our self-collected datasets show that DrHouse can achieve up to an 18.8% increase in diagnosis accuracy over the state-of-the-art baselines. The results of a 32-participant user study show that 75% medical experts and 91.7% patients are willing to use DrHouse.
Abstract:Recently,smart roadside infrastructure (SRI) has demonstrated the potential of achieving fully autonomous driving systems. To explore the potential of infrastructure-assisted autonomous driving, this paper presents the design and deployment of Soar, the first end-to-end SRI system specifically designed to support autonomous driving systems. Soar consists of both software and hardware components carefully designed to overcome various system and physical challenges. Soar can leverage the existing operational infrastructure like street lampposts for a lower barrier of adoption. Soar adopts a new communication architecture that comprises a bi-directional multi-hop I2I network and a downlink I2V broadcast service, which are designed based on off-the-shelf 802.11ac interfaces in an integrated manner. Soar also features a hierarchical DL task management framework to achieve desirable load balancing among nodes and enable them to collaborate efficiently to run multiple data-intensive autonomous driving applications. We deployed a total of 18 Soar nodes on existing lampposts on campus, which have been operational for over two years. Our real-world evaluation shows that Soar can support a diverse set of autonomous driving applications and achieve desirable real-time performance and high communication reliability. Our findings and experiences in this work offer key insights into the development and deployment of next-generation smart roadside infrastructure and autonomous driving systems.
Abstract:Individuals with visual impairments, encompassing both partial and total difficulties in visual perception, are referred to as visually impaired (VI) people. An estimated 2.2 billion individuals worldwide are affected by visual impairments. Recent advancements in multi-modal large language models (MLLMs) have showcased their extraordinary capabilities across various domains. It is desirable to help VI individuals with MLLMs' great capabilities of visual understanding and reasoning. However, it is challenging for VI people to use MLLMs due to the difficulties in capturing the desirable images to fulfill their daily requests. For example, the target object is not fully or partially placed in the image. This paper explores how to leverage MLLMs for VI individuals to provide visual-question answers. VIAssist can identify undesired images and provide detailed actions. Finally, VIAssist can provide reliable answers to users' queries based on the images. Our results show that VIAssist provides +0.21 and +0.31 higher BERTScore and ROUGE scores than the baseline, respectively.
Abstract:Deep Learning (DL) models have been widely deployed on IoT devices with the help of advancements in DL algorithms and chips. However, the limited resources of edge devices make these on-device DL models hard to be generalizable to diverse environments and tasks. Although the recently emerged foundation models (FMs) show impressive generalization power, how to effectively leverage the rich knowledge of FMs on resource-limited edge devices is still not explored. In this paper, we propose EdgeFM, a novel edge-cloud cooperative system with open-set recognition capability. EdgeFM selectively uploads unlabeled data to query the FM on the cloud and customizes the specific knowledge and architectures for edge models. Meanwhile, EdgeFM conducts dynamic model switching at run-time taking into account both data uncertainty and dynamic network variations, which ensures the accuracy always close to the original FM. We implement EdgeFM using two FMs on two edge platforms. We evaluate EdgeFM on three public datasets and two self-collected datasets. Results show that EdgeFM can reduce the end-to-end latency up to 3.2x and achieve 34.3% accuracy increase compared with the baseline.
Abstract:Alzheimer's Disease (AD) and related dementia are a growing global health challenge due to the aging population. In this paper, we present ADMarker, the first end-to-end system that integrates multi-modal sensors and new federated learning algorithms for detecting multidimensional AD digital biomarkers in natural living environments. ADMarker features a novel three-stage multi-modal federated learning architecture that can accurately detect digital biomarkers in a privacy-preserving manner. Our approach collectively addresses several major real-world challenges, such as limited data labels, data heterogeneity, and limited computing resources. We built a compact multi-modality hardware system and deployed it in a four-week clinical trial involving 91 elderly participants. The results indicate that ADMarker can accurately detect a comprehensive set of digital biomarkers with up to 93.8% accuracy and identify early AD with an average of 88.9% accuracy. ADMarker offers a new platform that can allow AD clinicians to characterize and track the complex correlation between multidimensional interpretable digital biomarkers, demographic factors of patients, and AD diagnosis in a longitudinal manner.
Abstract:Indoor self-localization is a highly demanded system function for smartphones. The current solutions based on inertial, radio frequency, and geomagnetic sensing may have degraded performance when their limiting factors take effect. In this paper, we present a new indoor simultaneous localization and mapping (SLAM) system that utilizes the smartphone's built-in audio hardware and inertial measurement unit (IMU). Our system uses a smartphone's loudspeaker to emit near-inaudible chirps and then the microphone to record the acoustic echoes from the indoor environment. Our profiling measurements show that the echoes carry location information with sub-meter granularity. To enable SLAM, we apply contrastive learning to construct an echoic location feature (ELF) extractor, such that the loop closures on the smartphone's trajectory can be accurately detected from the associated ELF trace. The detection results effectively regulate the IMU-based trajectory reconstruction. Extensive experiments show that our ELF-based SLAM achieves median localization errors of $0.1\,\text{m}$, $0.53\,\text{m}$, and $0.4\,\text{m}$ on the reconstructed trajectories in a living room, an office, and a shopping mall, and outperforms the Wi-Fi and geomagnetic SLAM systems.
Abstract:Adversarial example attack endangers the mobile edge systems such as vehicles and drones that adopt deep neural networks for visual sensing. This paper presents {\em Sardino}, an active and dynamic defense approach that renews the inference ensemble at run time to develop security against the adaptive adversary who tries to exfiltrate the ensemble and construct the corresponding effective adversarial examples. By applying consistency check and data fusion on the ensemble's predictions, Sardino can detect and thwart adversarial inputs. Compared with the training-based ensemble renewal, we use HyperNet to achieve {\em one million times} acceleration and per-frame ensemble renewal that presents the highest level of difficulty to the prerequisite exfiltration attacks. Moreover, the robustness of the renewed ensembles against adversarial examples is enhanced with adversarial learning for the HyperNet. We design a run-time planner that maximizes the ensemble size in favor of security while maintaining the processing frame rate. Beyond adversarial examples, Sardino can also address the issue of out-of-distribution inputs effectively. This paper presents extensive evaluation of Sardino's performance in counteracting adversarial examples and applies it to build a real-time car-borne traffic sign recognition system. Live on-road tests show the built system's effectiveness in maintaining frame rate and detecting out-of-distribution inputs due to the false positives of a preceding YOLO-based traffic sign detector.