Abstract:Over the past few years, vision transformers (ViTs) have consistently demonstrated remarkable performance across various visual recognition tasks. However, attempts to enhance their robustness have yielded limited success, mainly focusing on different training strategies, input patch augmentation, or network structural enhancements. These approaches often involve extensive training and fine-tuning, which are time-consuming and resource-intensive. To tackle these obstacles, we introduce a novel approach named Spatial Autocorrelation Token Analysis (SATA). By harnessing spatial relationships between token features, SATA enhances both the representational capacity and robustness of ViT models. This is achieved through the analysis and grouping of tokens according to their spatial autocorrelation scores prior to their input into the Feed-Forward Network (FFN) block of the self-attention mechanism. Importantly, SATA seamlessly integrates into existing pre-trained ViT baselines without requiring retraining or additional fine-tuning, while concurrently improving efficiency by reducing the computational load of the FFN units. Experimental results show that the baseline ViTs enhanced with SATA not only achieve a new state-of-the-art top-1 accuracy on ImageNet-1K image classification (94.9%) but also establish new state-of-the-art performance across multiple robustness benchmarks, including ImageNet-A (top-1=63.6%), ImageNet-R (top-1=79.2%), and ImageNet-C (mCE=13.6%), all without requiring additional training or fine-tuning of baseline models.
Abstract:The effectiveness of large language models (LLMs) is often hindered by duplicated data in their extensive pre-training datasets. Current approaches primarily focus on detecting and removing duplicates, which risks the loss of valuable information and neglects the varying degrees of duplication. To address this, we propose a soft deduplication method that maintains dataset integrity while selectively reducing the sampling weight of data with high commonness. Central to our approach is the concept of "data commonness", a metric we introduce to quantify the degree of duplication by measuring the occurrence probabilities of samples using an n-gram model. Empirical analysis shows that this method significantly improves training efficiency, achieving comparable perplexity scores with at least a 26% reduction in required training steps. Additionally, it enhances average few-shot downstream accuracy by 1.77% when trained for an equivalent duration. Importantly, this approach consistently improves performance, even on rigorously deduplicated datasets, indicating its potential to complement existing methods and become a standard pre-training process for LLMs.
Abstract:Decisions made by convolutional neural networks(CNN) can be understood and explained by visualizing discriminative regions on images. To this end, Class Activation Map (CAM) based methods were proposed as powerful interpretation tools, making the prediction of deep learning models more explainable, transparent, and trustworthy. However, all the CAM-based methods (e.g., CAM, Grad-CAM, and Relevance-CAM) can only be used for interpreting CNN models with fully-connected (FC) layers as a classifier. It is worth noting that many deep learning models classify images without FC layers, e.g., few-shot learning image classification, contrastive learning image classification, and image retrieval tasks. In this work, a post-hoc interpretation tool named feature activation map (FAM) is proposed, which can interpret deep learning models without FC layers as a classifier. In the proposed FAM algorithm, the channel-wise contribution weights are derived from the similarity scores between two image embeddings. The activation maps are linearly combined with the corresponding normalized contribution weights, forming the explanation map for visualization. The quantitative and qualitative experiments conducted on ten deep learning models for few-shot image classification, contrastive learning image classification and image retrieval tasks demonstrate the effectiveness of the proposed FAM algorithm.
Abstract:18F-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) imaging usually needs a full-dose radioactive tracer to obtain satisfactory diagnostic results, which raises concerns about the potential health risks of radiation exposure, especially for pediatric patients. Reconstructing the low-dose PET (L-PET) images to the high-quality full-dose PET (F-PET) ones is an effective way that both reduces the radiation exposure and remains diagnostic accuracy. In this paper, we propose a resource-efficient deep learning framework for L-PET reconstruction and analysis, referred to as transGAN-SDAM, to generate F-PET from corresponding L-PET, and quantify the standard uptake value ratios (SUVRs) of these generated F-PET at whole brain. The transGAN-SDAM consists of two modules: a transformer-encoded Generative Adversarial Network (transGAN) and a Spatial Deformable Aggregation Module (SDAM). The transGAN generates higher quality F-PET images, and then the SDAM integrates the spatial information of a sequence of generated F-PET slices to synthesize whole-brain F-PET images. Experimental results demonstrate the superiority and rationality of our approach.
Abstract:Fine-grained visual categorization (FGVC), which aims at classifying objects with small inter-class variances, has been significantly advanced in recent years. However, ultra-fine-grained visual categorization (ultra-FGVC), which targets at identifying subclasses with extremely similar patterns, has not received much attention. In ultra-FGVC datasets, the samples per category are always scarce as the granularity moves down, which will lead to overfitting problems. Moreover, the difference among different categories is too subtle to distinguish even for professional experts. Motivated by these issues, this paper proposes a novel compositional feature embedding and similarity metric (CECS). Specifically, in the compositional feature embedding module, we randomly select patches in the original input image, and these patches are then replaced by patches from the images of different categories or masked out. Then the replaced and masked images are used to augment the original input images, which can provide more diverse samples and thus largely alleviate overfitting problem resulted from limited training samples. Besides, learning with diverse samples forces the model to learn not only the most discriminative features but also other informative features in remaining regions, enhancing the generalization and robustness of the model. In the compositional similarity metric module, a new similarity metric is developed to improve the classification performance by narrowing the intra-category distance and enlarging the inter-category distance. Experimental results on two ultra-FGVC datasets and one FGVC dataset with recent benchmark methods consistently demonstrate that the proposed CECS method achieves the state of-the-art performance.
Abstract:Large-scale Pretrained Language Models (PLMs) have become the new paradigm for Natural Language Processing (NLP). PLMs with hundreds of billions parameters such as GPT-3 have demonstrated strong performances on natural language understanding and generation with \textit{few-shot in-context} learning. In this work, we present our practice on training large-scale autoregressive language models named PanGu-$\alpha$, with up to 200 billion parameters. PanGu-$\alpha$ is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-$\alpha$, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-$\alpha$ in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-$\alpha$ in performing various tasks under few-shot or zero-shot settings.
Abstract:Masked language model and autoregressive language model are two types of language models. While pretrained masked language models such as BERT overwhelm the line of natural language understanding (NLU) tasks, autoregressive language models such as GPT are especially capable in natural language generation (NLG). In this paper, we propose a probabilistic masking scheme for the masked language model, which we call probabilistically masked language model (PMLM). We implement a specific PMLM with a uniform prior distribution on the masking ratio named u-PMLM. We prove that u-PMLM is equivalent to an autoregressive permutated language model. One main advantage of the model is that it supports text generation in arbitrary order with surprisingly good quality, which could potentially enable new applications over traditional unidirectional generation. Besides, the pretrained u-PMLM also outperforms BERT on a set of downstream NLU tasks.
Abstract:Predictive process analytics has recently gained significant attention, and yet its successful adoption in organisations relies on how well users can trust the predictions of the underlying machine learning algorithms that are often applied and recognised as a `black-box'. Without understanding the rationale of the black-box machinery, there will be a lack of trust in the predictions, a reluctance to use the predictions, and in the worse case, consequences of an incorrect decision based on the prediction. In this paper, we emphasise the importance of interpreting the predictive models in addition to the evaluation using conventional metrics, such as accuracy, in the context of predictive process monitoring. We review existing studies on business process monitoring benchmarks for predicting process outcomes and remaining time. We derive explanations that present the behaviour of the entire predictive model as well as explanations describing a particular prediction. These explanations are used to reveal data leakages, assess the interpretability of features used by the model, and the degree of the use of process knowledge in the existing benchmark models. Findings from this exploratory study motivate the need to incorporate interpretability in predictive process analytics.
Abstract:Leveraging multilingual parallel texts to automatically generate paraphrases has drawn much attention as size of high-quality paraphrase corpus is limited. Round-trip translation, also known as the pivoting method, is a typical approach to this end. However, we notice that the pivoting process involves multiple machine translation models and is likely to incur semantic drift during the two-step translations. In this paper, inspired by the Transformer-based language models, we propose a simple and unified paraphrasing model, which is purely trained on multilingual parallel data and can conduct zero-shot paraphrase generation in one step. Compared with the pivoting approach, paraphrases generated by our model is more semantically similar to the input sentence. Moreover, since our model shares the same architecture as GPT (Radford et al., 2018), we are able to pre-train the model on large-scale unparallel corpus, which further improves the fluency of the output sentences. In addition, we introduce the mechanism of denoising auto-encoder (DAE) to improve diversity and robustness of the model. Experimental results show that our model surpasses the pivoting method in terms of relevance, diversity, fluency and efficiency.
Abstract:The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks. The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy, Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti) and natural language inference (XNLI).