Abstract:Spectral 3D computer vision examines both the geometric and spectral properties of objects. It provides a deeper understanding of an object's physical properties by providing information from narrow bands in various regions of the electromagnetic spectrum. Mapping the spectral information onto the 3D model reveals changes in the spectra-structure space or enhances 3D representations with properties such as reflectance, chromatic aberration, and varying defocus blur. This emerging paradigm advances traditional computer vision and opens new avenues of research in 3D structure, depth estimation, motion analysis, and more. It has found applications in areas such as smart agriculture, environment monitoring, building inspection, geological exploration, and digital cultural heritage records. This survey offers a comprehensive overview of spectral 3D computer vision, including a unified taxonomy of methods, key application areas, and future challenges and prospects.
Abstract:Fine-grained visual categorization (FGVC), which aims at classifying objects with small inter-class variances, has been significantly advanced in recent years. However, ultra-fine-grained visual categorization (ultra-FGVC), which targets at identifying subclasses with extremely similar patterns, has not received much attention. In ultra-FGVC datasets, the samples per category are always scarce as the granularity moves down, which will lead to overfitting problems. Moreover, the difference among different categories is too subtle to distinguish even for professional experts. Motivated by these issues, this paper proposes a novel compositional feature embedding and similarity metric (CECS). Specifically, in the compositional feature embedding module, we randomly select patches in the original input image, and these patches are then replaced by patches from the images of different categories or masked out. Then the replaced and masked images are used to augment the original input images, which can provide more diverse samples and thus largely alleviate overfitting problem resulted from limited training samples. Besides, learning with diverse samples forces the model to learn not only the most discriminative features but also other informative features in remaining regions, enhancing the generalization and robustness of the model. In the compositional similarity metric module, a new similarity metric is developed to improve the classification performance by narrowing the intra-category distance and enlarging the inter-category distance. Experimental results on two ultra-FGVC datasets and one FGVC dataset with recent benchmark methods consistently demonstrate that the proposed CECS method achieves the state of-the-art performance.