Abstract:Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that $D$ive into $A$ttention $M$echanism of LVLM to $R$educe $O$bject Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention outlier tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs. The code of our method will be released soon.
Abstract:3D patient body modeling is critical to the success of automated patient positioning for smart medical scanning and operating rooms. Existing CNN-based end-to-end patient modeling solutions typically require a) customized network designs demanding large amount of relevant training data, covering extensive realistic clinical scenarios (e.g., patient covered by sheets), which leads to suboptimal generalizability in practical deployment, b) expensive 3D human model annotations, i.e., requiring huge amount of manual effort, resulting in systems that scale poorly. To address these issues, we propose a generic modularized 3D patient modeling method consists of (a) a multi-modal keypoint detection module with attentive fusion for 2D patient joint localization, to learn complementary cross-modality patient body information, leading to improved keypoint localization robustness and generalizability in a wide variety of imaging (e.g., CT, MRI etc.) and clinical scenarios (e.g., heavy occlusions); and (b) a self-supervised 3D mesh regression module which does not require expensive 3D mesh parameter annotations to train, bringing immediate cost benefits for clinical deployment. We demonstrate the efficacy of the proposed method by extensive patient positioning experiments on both public and clinical data. Our evaluation results achieve superior patient positioning performance across various imaging modalities in real clinical scenarios.
Abstract:Existing 3D mesh shape evaluation metrics mainly focus on the overall shape but are usually less sensitive to local details. This makes them inconsistent with human evaluation, as human perception cares about both overall and detailed shape. In this paper, we propose an analytic metric named Spectrum Area Under the Curve Difference (SAUCD) that demonstrates better consistency with human evaluation. To compare the difference between two shapes, we first transform the 3D mesh to the spectrum domain using the discrete Laplace-Beltrami operator and Fourier transform. Then, we calculate the Area Under the Curve (AUC) difference between the two spectrums, so that each frequency band that captures either the overall or detailed shape is equitably considered. Taking human sensitivity across frequency bands into account, we further extend our metric by learning suitable weights for each frequency band which better aligns with human perception. To measure the performance of SAUCD, we build a 3D mesh evaluation dataset called Shape Grading, along with manual annotations from more than 800 subjects. By measuring the correlation between our metric and human evaluation, we demonstrate that SAUCD is well aligned with human evaluation, and outperforms previous 3D mesh metrics.
Abstract:Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data. Existing FL methods either iteratively share local model parameters or deploy co-distillation. However, the former is highly susceptible to private data leakage, and the latter design relies on the prerequisites of task-relevant real data. Instead, we propose a data-free FL framework based on local-to-central collaborative distillation with direct input and output space exploitation. Our design eliminates any requirement of recursive local parameter exchange or auxiliary task-relevant data to transfer knowledge, thereby giving direct privacy control to local users. In particular, to cope with the inherent data heterogeneity across locals, our technique learns to distill input on which each local model produces consensual yet unique results to represent each expertise. Our proposed FL framework achieves notable privacy-utility trade-offs with extensive experiments on image classification and segmentation tasks under various real-world heterogeneous federated learning settings on both natural and medical images.
Abstract:Interpretation of deep learning remains a very challenging problem. Although the Class Activation Map (CAM) is widely used to interpret deep model predictions by highlighting object location, it fails to provide insight into the salient features used by the model to make decisions. Furthermore, existing evaluation protocols often overlook the correlation between interpretability performance and the model's decision quality, which presents a more fundamental issue. This paper proposes a new two-stage interpretability method called the Decomposition Class Activation Map (Decom-CAM), which offers a feature-level interpretation of the model's prediction. Decom-CAM decomposes intermediate activation maps into orthogonal features using singular value decomposition and generates saliency maps by integrating them. The orthogonality of features enables CAM to capture local features and can be used to pinpoint semantic components such as eyes, noses, and faces in the input image, making it more beneficial for deep model interpretation. To ensure a comprehensive comparison, we introduce a new evaluation protocol by dividing the dataset into subsets based on classification accuracy results and evaluating the interpretability performance on each subset separately. Our experiments demonstrate that the proposed Decom-CAM outperforms current state-of-the-art methods significantly by generating more precise saliency maps across all levels of classification accuracy. Combined with our feature-level interpretability approach, this paper could pave the way for a new direction for understanding the decision-making process of deep neural networks.
Abstract:Neural Radiance Fields (NeRF) have led to breakthroughs in the novel view synthesis problem. Positional Encoding (P.E.) is a critical factor that brings the impressive performance of NeRF, where low-dimensional coordinates are mapped to high-dimensional space to better recover scene details. However, blindly increasing the frequency of P.E. leads to overfitting when the reconstruction problem is highly underconstrained, \eg, few-shot images for training. We harness low-frequency neural fields to regularize high-frequency neural fields from overfitting to better address the problem of few-shot view synthesis. We propose reconstructing with a low-frequency only field and then finishing details with a high-frequency equipped field. Unlike most existing solutions that regularize the output space (\ie, rendered images), our regularization is conducted in the input space (\ie, signal frequency). We further propose a simple-yet-effective strategy for tuning the frequency to avoid overfitting few-shot inputs: enforcing consistency among the frequency domain of rendered 2D images. Thanks to the input space regularizing scheme, our method readily applies to inputs beyond spatial locations, such as the time dimension in dynamic scenes. Comparisons with state-of-the-art on both synthetic and natural datasets validate the effectiveness of our proposed solution for few-shot view synthesis. Code is available at \href{https://github.com/lsongx/halo}{https://github.com/lsongx/halo}.
Abstract:To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi-view training data. To address this shortcoming, people have explored the use of synthetic images. But besides the usual impact of visual gap between rendered and target data, synthetic-data-driven multi-view estimators also suffer from overfitting to the camera viewpoint distribution sampled during training which usually differs from real-world distributions. Tackling both challenges, we propose a novel simulation-based training pipeline for multi-view human mesh recovery, which (a) relies on intermediate 2D representations which are more robust to synthetic-to-real domain gap; (b) leverages learnable calibration and triangulation to adapt to more diversified camera setups; and (c) progressively aggregates multi-view information in a canonical 3D space to remove ambiguities in 2D representations. Through extensive benchmarking, we demonstrate the superiority of the proposed solution especially for unseen in-the-wild scenarios.
Abstract:Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they also require numerous rounds of synchronized communication and, more importantly, suffer from a privacy leakage risk. We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation in this work. The central model is learned from local knowledge via ensemble attention distillation. Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage. We demonstrate that our method achieves very competitive performance with more robust privacy preservation based on extensive experiments on image classification, segmentation, and reconstruction tasks.
Abstract:Knowing the 3D motions in a dynamic scene is essential to many vision applications. Recent progress is mainly focused on estimating the activity of some specific elements like humans. In this paper, we leverage a neural motion field for estimating the motion of all points in a multiview setting. Modeling the motion from a dynamic scene with multiview data is challenging due to the ambiguities in points of similar color and points with time-varying color. We propose to regularize the estimated motion to be predictable. If the motion from previous frames is known, then the motion in the near future should be predictable. Therefore, we introduce a predictability regularization by first conditioning the estimated motion on latent embeddings, then by adopting a predictor network to enforce predictability on the embeddings. The proposed framework PREF (Predictability REgularized Fields) achieves on par or better results than state-of-the-art neural motion field-based dynamic scene representation methods, while requiring no prior knowledge of the scene.
Abstract:Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model while the training data remains decentralized. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they suffer from communication bottlenecks. More importantly, they risk privacy leakage. In this work, we develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation using unlabeled, cross-domain public data. We propose a quantized and noisy ensemble of local predictions from completely trained local models for stronger privacy guarantees without sacrificing accuracy. Based on extensive experiments on image classification and text classification tasks, we show that our privacy-preserving method outperforms baseline FL algorithms with superior performance in both accuracy and communication efficiency.