Abstract:Micro-expression recognition (MER) aims to recognize the short and subtle facial movements from the Micro-expression (ME) video clips, which reveal real emotions. Recent MER methods mostly only utilize special frames from ME video clips or extract optical flow from these special frames. However, they neglect the relationship between movements and space-time, while facial cues are hidden within these relationships. To solve this issue, we propose the Hierarchical Space-Time Attention (HSTA). Specifically, we first process ME video frames and special frames or data parallelly by our cascaded Unimodal Space-Time Attention (USTA) to establish connections between subtle facial movements and specific facial areas. Then, we design Crossmodal Space-Time Attention (CSTA) to achieve a higher-quality fusion for crossmodal data. Finally, we hierarchically integrate USTA and CSTA to grasp the deeper facial cues. Our model emphasizes temporal modeling without neglecting the processing of special data, and it fuses the contents in different modalities while maintaining their respective uniqueness. Extensive experiments on the four benchmarks show the effectiveness of our proposed HSTA. Specifically, compared with the latest method on the CASME3 dataset, it achieves about 3% score improvement in seven-category classification.
Abstract:Clustering is a fundamental unsupervised representation learning task with wide application in computer vision and pattern recognition. Deep clustering utilizes deep neural networks to learn latent representation, which is suitable for clustering. However, previous deep clustering methods, especially image clustering, focus on the features of the data itself and ignore the relationship between the data, which is crucial for clustering. In this paper, we propose a novel Deep Structure and Attention aware Subspace Clustering (DSASC), which simultaneously considers data content and structure information. We use a vision transformer to extract features, and the extracted features are divided into two parts, structure features, and content features. The two features are used to learn a more efficient subspace structure for spectral clustering. Extensive experimental results demonstrate that our method significantly outperforms state-of-the-art methods. Our code will be available at https://github.com/cs-whh/DSASC
Abstract:Adverse drug reaction (ADR) detection is an essential task in the medical field, as ADRs have a gravely detrimental impact on patients' health and the healthcare system. Due to a large number of people sharing information on social media platforms, an increasing number of efforts focus on social media data to carry out effective ADR detection. Despite having achieved impressive performance, the existing methods of ADR detection still suffer from three main challenges. Firstly, researchers have consistently ignored the interaction between domain keywords and other words in the sentence. Secondly, social media datasets suffer from the challenges of low annotated data. Thirdly, the issue of sample imbalance is commonly observed in social media datasets. To solve these challenges, we propose the Knowledge Enhanced Shallow and Deep Transformer(KESDT) model for ADR detection. Specifically, to cope with the first issue, we incorporate the domain keywords into the Transformer model through a shallow fusion manner, which enables the model to fully exploit the interactive relationships between domain keywords and other words in the sentence. To overcome the low annotated data, we integrate the synonym sets into the Transformer model through a deep fusion manner, which expands the size of the samples. To mitigate the impact of sample imbalance, we replace the standard cross entropy loss function with the focal loss function for effective model training. We conduct extensive experiments on three public datasets including TwiMed, Twitter, and CADEC. The proposed KESDT outperforms state-of-the-art baselines on F1 values, with relative improvements of 4.87%, 47.83%, and 5.73% respectively, which demonstrates the effectiveness of our proposed KESDT.
Abstract:Cortical surface registration plays a crucial role in aligning cortical functional and anatomical features across individuals. However, conventional registration algorithms are computationally inefficient. Recently, learning-based registration algorithms have emerged as a promising solution, significantly improving processing efficiency. Nonetheless, there remains a gap in the development of a learning-based method that exceeds the state-of-the-art conventional methods simultaneously in computational efficiency, registration accuracy, and distortion control, despite the theoretically greater representational capabilities of deep learning approaches. To address the challenge, we present SUGAR, a unified unsupervised deep-learning framework for both rigid and non-rigid registration. SUGAR incorporates a U-Net-based spherical graph attention network and leverages the Euler angle representation for deformation. In addition to the similarity loss, we introduce fold and multiple distortion losses, to preserve topology and minimize various types of distortions. Furthermore, we propose a data augmentation strategy specifically tailored for spherical surface registration, enhancing the registration performance. Through extensive evaluation involving over 10,000 scans from 7 diverse datasets, we showed that our framework exhibits comparable or superior registration performance in accuracy, distortion, and test-retest reliability compared to conventional and learning-based methods. Additionally, SUGAR achieves remarkable sub-second processing times, offering a notable speed-up of approximately 12,000 times in registering 9,000 subjects from the UK Biobank dataset in just 32 minutes. This combination of high registration performance and accelerated processing time may greatly benefit large-scale neuroimaging studies.
Abstract:This paper describes DiDi AI Labs' submission to the WMT2020 news translation shared task. We participate in the translation direction of Chinese->English. In this direction, we use the Transformer as our baseline model, and integrate several techniques for model enhancement, including data filtering, data selection, back-translation, fine-tuning, model ensembling, and re-ranking. As a result, our submission achieves a BLEU score of $36.6$ in Chinese->English.
Abstract:Communicating effectively with customers is a challenge for many marketers, but especially in a context that is both pivotal to individual long-term financial well-being and difficult to understand: pensions. Around the world, participants are reluctant to consider their pension in advance, it leads to a lack of preparation of their pension retirement [1], [2]. In order to engage participants to obtain information on their expected pension benefits, personalizing the pension providers' email communication is a first and crucial step. We describe a machine learning approach to model email newsletters to fit participants' interests. The data for the modeling and analysis is collected from newsletters sent by a large Dutch pension provider of the Netherlands and is divided into two parts. The first part comprises 2,228,000 customers whereas the second part comprises the data of a pilot study, which took place in July 2018 with 465,711 participants. In both cases, our algorithm extracts features from continuous and categorical data using random forests, and then calculates node embeddings of the decision boundaries of the random forest. We illustrate the algorithm's effectiveness for the classification task, and how it can be used to perform data mining tasks. In order to confirm that the result is valid for more than one data set, we also illustrate the properties of our algorithm in benchmark data sets concerning churning. In the data sets considered, the proposed modeling demonstrates competitive performance with respect to other state of the art approaches based on random forests, achieving the best Area Under the Curve (AUC) in the pension data set (0.948). For the descriptive part, the algorithm can identify customer segmentations that can be used by marketing departments to better target their communication towards their customers.
Abstract:In computer experiments, a mathematical model implemented on a computer is used to represent complex physical phenomena. These models, known as computer simulators, enable experimental study of a virtual representation of the complex phenomena. Simulators can be thought of as complex functions that take many inputs and provide an output. Often these simulators are themselves expensive to compute, and may be approximated by "surrogate models" such as statistical regression models. In this paper we consider a new kind of surrogate model, a Bayesian ensemble of trees (Chipman et al. 2010), with the specific goal of learning enough about the simulator that a particular feature of the simulator can be estimated. We focus on identifying the simulator's global minimum. Utilizing the Bayesian version of the Expected Improvement criterion (Jones et al. 1998), we show that this ensemble is particularly effective when the simulator is ill-behaved, exhibiting nonstationarity or abrupt changes in the response. A number of illustrations of the approach are given, including a tidal power application.