Abstract:The precise diagnosis of urinary stones is crucial for devising effective treatment strategies. The diagnostic process, however, is often complicated by the low contrast between stones and surrounding tissues, as well as the variability in stone locations across different patients. To address this issue, we propose a novel location embedding based pairwise distance learning network (LEPD-Net) that leverages low-dose abdominal X-ray imaging combined with location information for the fine-grained diagnosis of urinary stones. LEPD-Net enhances the representation of stone-related features through context-aware region enhancement, incorporates critical location knowledge via stone location embedding, and achieves recognition of fine-grained objects with our innovative fine-grained pairwise distance learning. Additionally, we have established an in-house dataset on urinary tract stones to demonstrate the effectiveness of our proposed approach. Comprehensive experiments conducted on this dataset reveal that our framework significantly surpasses existing state-of-the-art methods.
Abstract:Acquiring pixel-level annotations is often limited in applications such as histology studies that require domain expertise. Various semi-supervised learning approaches have been developed to work with limited ground truth annotations, such as the popular teacher-student models. However, hierarchical prediction uncertainty within the student model (intra-uncertainty) and image prediction uncertainty (inter-uncertainty) have not been fully utilized by existing methods. To address these issues, we first propose a novel inter- and intra-uncertainty regularization method to measure and constrain both inter- and intra-inconsistencies in the teacher-student architecture. We also propose a new two-stage network with pseudo-mask guided feature aggregation (PG-FANet) as the segmentation model. The two-stage structure complements with the uncertainty regularization strategy to avoid introducing extra modules in solving uncertainties and the aggregation mechanisms enable multi-scale and multi-stage feature integration. Comprehensive experimental results over the MoNuSeg and CRAG datasets show that our PG-FANet outperforms other state-of-the-art methods and our semi-supervised learning framework yields competitive performance with a limited amount of labeled data.
Abstract:Zero-shot incremental learning aims to enable the model to generalize to new classes without forgetting previously learned classes. However, the semantic gap between old and new sample classes can lead to catastrophic forgetting. Additionally, existing algorithms lack capturing significant information from each sample image domain, impairing models' classification performance. Therefore, this paper proposes a novel Spatial-Frequency Domain Network (SFDNet) which contains a Spatial-Frequency Feature Extraction (SFFE) module and Attention Feature Alignment (AFA) module to improve the Zero-Shot Translation for Class Incremental algorithm. Firstly, SFFE module is designed which contains a dual attention mechanism for obtaining salient spatial-frequency feature information. Secondly, a novel feature fusion module is conducted for obtaining fused spatial-frequency domain features. Thirdly, the Nearest Class Mean classifier is utilized to select the most suitable category. Finally, iteration between tasks is performed using the Zero-Shot Translation model. The proposed SFDNet has the ability to effectively extract spatial-frequency feature representation from input images, improve the accuracy of image classification, and fundamentally alleviate catastrophic forgetting. Extensive experiments on the CUB 200-2011 and CIFAR100 datasets demonstrate that our proposed algorithm outperforms state-of-the-art incremental learning algorithms.
Abstract:Detecting weak target is an important and challenging problem in many applications such as radar, sonar etc. However, conventional detection methods are often ineffective in this case because of low signal-to-noise ratio (SNR). This paper presents a track-before-detect (TBD) algorithm based on an improved particle filter, i.e. cost-reference particle filter bank (CRPFB), which turns the problem of target detection to the problem of two-layer hypothesis testing. The first layer is implemented by CRPFB for state estimation of possible target. CRPFB has entirely parallel structure, consisting amounts of cost-reference particle filters with different hypothesized prior information. The second layer is to compare a test metric with a given threshold, which is constructed from the output of the first layer and fits GEV distribution. The performance of our proposed TBD algorithm and the existed TBD algorithms are compared according to the experiments on nonlinear frequency modulated (NLFM) signal detection and tracking. Simulation results show that the proposed TBD algorithm has better performance than the state-of-the-arts in detection, tracking, and time efficiency.
Abstract:Interest point detection methods have received increasing attention and are widely used in computer vision tasks such as image retrieval and 3D reconstruction. In this work, second-order anisotropic Gaussian directional derivative filters with multiple scales are used to smooth the input image and a novel blob detection method is proposed. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art benchmarks in terms of detection performance and robustness to affine transformations.
Abstract:Visual representation based on covariance matrix has demonstrates its efficacy for image classification by characterising the pairwise correlation of different channels in convolutional feature maps. However, pairwise correlation will become misleading once there is another channel correlating with both channels of interest, resulting in the ``confounding'' effect. For this case, ``partial correlation'' which removes the confounding effect shall be estimated instead. Nevertheless, reliably estimating partial correlation requires to solve a symmetric positive definite matrix optimisation, known as sparse inverse covariance estimation (SICE). How to incorporate this process into CNN remains an open issue. In this work, we formulate SICE as a novel structured layer of CNN. To ensure end-to-end trainability, we develop an iterative method to solve the above matrix optimisation during forward and backward propagation steps. Our work obtains a partial correlation based deep visual representation and mitigates the small sample problem often encountered by covariance matrix estimation in CNN. Computationally, our model can be effectively trained with GPU and works well with a large number of channels of advanced CNNs. Experiments show the efficacy and superior classification performance of our deep visual representation compared to covariance matrix based counterparts.
Abstract:Confidence calibration - the process to calibrate the output probability distribution of neural networks - is essential for safety-critical applications of such networks. Recent works verify the link between mis-calibration and overfitting. However, early stopping, as a well-known technique to mitigate overfitting, fails to calibrate networks. In this work, we study the limitions of early stopping and comprehensively analyze the overfitting problem of a network considering each individual block. We then propose a novel regularization method, predecessor combination search (PCS), to improve calibration by searching a combination of best-fitting block predecessors, where block predecessors are the corresponding network blocks with weight parameters from earlier training stages. PCS achieves the state-of-the-art calibration performance on multiple datasets and architectures. In addition, PCS improves model robustness under dataset distribution shift.
Abstract:Ovarian cancer is one of the most serious cancers that threaten women around the world. Epithelial ovarian cancer (EOC), as the most commonly seen subtype of ovarian cancer, has rather high mortality rate and poor prognosis among various gynecological cancers. Survival analysis outcome is able to provide treatment advices to doctors. In recent years, with the development of medical imaging technology, survival prediction approaches based on pathological images have been proposed. In this study, we designed a deep framework named EOCSA which analyzes the prognosis of EOC patients based on pathological whole slide images (WSIs). Specifically, we first randomly extracted patches from WSIs and grouped them into multiple clusters. Next, we developed a survival prediction model, named DeepConvAttentionSurv (DCAS), which was able to extract patch-level features, removed less discriminative clusters and predicted the EOC survival precisely. Particularly, channel attention, spatial attention, and neuron attention mechanisms were used to improve the performance of feature extraction. Then patient-level features were generated from our weight calculation method and the survival time was finally estimated using LASSO-Cox model. The proposed EOCSA is efficient and effective in predicting prognosis of EOC and the DCAS ensures more informative and discriminative features can be extracted. As far as we know, our work is the first to analyze the survival of EOC based on WSIs and deep neural network technologies. The experimental results demonstrate that our proposed framework has achieved state-of-the-art performance of 0.980 C-index. The implementation of the approach can be found at https://github.com/RanSuLab/EOCprognosis.
Abstract:Monocular visual odometry (VO) is an important task in robotics and computer vision. Thus far, how to build accurate and robust monocular VO systems that can work well in diverse scenarios remains largely unsolved. In this paper, we propose a framework to exploit monocular depth estimation for improving VO. The core of our framework is a monocular depth estimation module with a strong generalization capability for diverse scenes. It consists of two separate working modes to assist the localization and mapping. With a single monocular image input, the depth estimation module predicts a relative depth to help the localization module on improving the accuracy. With a sparse depth map and an RGB image input, the depth estimation module can generate accurate scale-consistent depth for dense mapping. Compared with current learning-based VO methods, our method demonstrates a stronger generalization ability to diverse scenes. More significantly, our framework is able to boost the performances of existing geometry-based VO methods by a large margin.
Abstract:Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the first time, to introduce the non-linear data projection concept into the design of FSFGIC architecture in order to address the limited sample problem in few-shot learning and at the same time to increase the discriminability of the model for fine-grained image classification. Specifically, we first design a feature re-abstraction embedding network that has the ability to not only obtain the required semantic features for effective metric learning but also re-enhance such features with finer details from input images. Then the descriptors of the query images and the support classes are projected into different non-linear spaces in our proposed similarity metric learning network to learn discriminative projection factors. This design can effectively operate in the challenging and restricted condition of a FSFGIC task for making the distance between the samples within the same class smaller and the distance between samples from different classes larger and for reducing the coupling relationship between samples from different categories. Furthermore, a novel similarity measure based on the proposed non-linear data project is presented for evaluating the relationships of feature information between a query image and a support set. It is worth to note that our proposed architecture can be easily embedded into any episodic training mechanisms for end-to-end training from scratch. Extensive experiments on FSFGIC tasks demonstrate the superiority of the proposed methods over the state-of-the-art benchmarks.