Abstract:Enriching geometric information on radio frequency (RF) signal power distribution in wireless communication systems, the radiomap has become an essential tool for resource allocation and network management. Usually, a dense radiomap is reconstructed from sparse observations collected by deployed sensors or mobile devices, which makes the radiomap estimation an urgent challenge. To leverage both physical principles of radio propagation models and data statistics from sparse observations, this work introduces a novel task-incentivized generative learning model, namely TiRE-GAN, for radiomap estimation. Specifically, we first introduce a radio depth map as input to capture the overall pattern of radio propagation and shadowing effects, following which a task-driven incentive network is proposed to provide feedback for radiomap compensation depending on downstream tasks. Our experimental results demonstrate the power of the radio depth map to capture radio propagation information, together with the efficiency of the proposed TiRE-GAN for radiomap estimation.
Abstract:Among applications of deep learning (DL) involving low cost sensors, remote image classification involves a physical channel that separates edge sensors and cloud classifiers. Traditional DL models must be divided between an encoder for the sensor and the decoder + classifier at the edge server. An important challenge is to effectively train such distributed models when the connecting channels have limited rate/capacity. Our goal is to optimize DL models such that the encoder latent requires low channel bandwidth while still delivers feature information for high classification accuracy. This work proposes a three-step joint learning strategy to guide encoders to extract features that are compact, discriminative, and amenable to common augmentations/transformations. We optimize latent dimension through an initial screening phase before end-to-end (E2E) training. To obtain an adjustable bit rate via a single pre-deployed encoder, we apply entropy-based quantization and/or manual truncation on the latent representations. Tests show that our proposed method achieves accuracy improvement of up to 1.5% on CIFAR-10 and 3% on CIFAR-100 over conventional E2E cross-entropy training.
Abstract:Recent advances of generative learning models are accompanied by the growing interest in federated learning (FL) based on generative adversarial network (GAN) models. In the context of FL, GAN can capture the underlying client data structure, and regenerate samples resembling the original data distribution without compromising the private raw data. Although most existing GAN-based FL works focus on training a global model, Personalized FL (PFL) sometimes can be more effective in view of client data heterogeneity in terms of distinct data sample distributions, feature spaces, and labels. To cope with client heterogeneity in GAN-based FL, we propose a novel GAN sharing and aggregation strategy for PFL. The proposed PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation. The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
Abstract:To satisfy the broad applications and insatiable hunger for deploying low latency multimedia data classification and data privacy in a cloud-based setting, federated learning (FL) has emerged as an important learning paradigm. For the practical cases involving limited computational power and only unlabeled data in many wireless communications applications, this work investigates FL paradigm in a resource-constrained and label-missing environment. Specifically, we propose a novel framework of UFed-GAN: Unsupervised Federated Generative Adversarial Network, which can capture user-side data distribution without local classification training. We also analyze the convergence and privacy of the proposed UFed-GAN. Our experimental results demonstrate the strong potential of UFed-GAN in addressing limited computational resources and unlabeled data while preserving privacy.
Abstract:Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation owing to its strong potential in capturing underlying data statistics while preserving data privacy. However, in cases of practical data heterogeneity among FL clients, existing FL frameworks still exhibit deficiency in capturing the overall feature properties of local client data that exhibit disparate distributions. In response, generative adversarial networks (GANs) have recently been exploited in FL to address data heterogeneity since GANs can be integrated for data regeneration without exposing original raw data. Despite some successes, existing GAN-related FL frameworks often incur heavy communication cost and also elicit other privacy concerns, which limit their applications in real scenarios. To this end, this work proposes a novel FL framework that requires only partial GAN model sharing. Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions across clients and to strengthen privacy preservation at reduced communication cost, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN shows great promise to tackle FL under non-IID client data distributions, while securing data privacy and lowering communication overhead.
Abstract:Outdoor radio map estimation is an important tool for network planning and resource management in modern Internet of Things (IoT) and cellular systems. Radio map describes spatial signal strength distribution and provides network coverage information. A practical goal is to estimate fine-resolution radio maps from sparse radio strength measurements. However, non-uniformly positioned measurements and access obstacles can make it difficult for accurate radio map estimation (RME) and spectrum planning in many outdoor environments. In this work, we develop a two-phase learning framework for radio map estimation by integrating radio propagation model and designing a conditional generative adversarial network (cGAN). We first explore global information to extract the radio propagation patterns. We then focus on the local features to estimate the effect of shadowing on radio maps in order to train and optimize the cGAN. Our experimental results demonstrate the efficacy of the proposed framework for radio map estimation based on generative models from sparse observations in outdoor scenarios.