Enriching geometric information on radio frequency (RF) signal power distribution in wireless communication systems, the radiomap has become an essential tool for resource allocation and network management. Usually, a dense radiomap is reconstructed from sparse observations collected by deployed sensors or mobile devices, which makes the radiomap estimation an urgent challenge. To leverage both physical principles of radio propagation models and data statistics from sparse observations, this work introduces a novel task-incentivized generative learning model, namely TiRE-GAN, for radiomap estimation. Specifically, we first introduce a radio depth map as input to capture the overall pattern of radio propagation and shadowing effects, following which a task-driven incentive network is proposed to provide feedback for radiomap compensation depending on downstream tasks. Our experimental results demonstrate the power of the radio depth map to capture radio propagation information, together with the efficiency of the proposed TiRE-GAN for radiomap estimation.