Abstract:Jailbreak attacks pose significant threats to large language models (LLMs), enabling attackers to bypass safeguards. However, existing reactive defense approaches struggle to keep up with the rapidly evolving multi-turn jailbreaks, where attackers continuously deepen their attacks to exploit vulnerabilities. To address this critical challenge, we propose HoneyTrap, a novel deceptive LLM defense framework leveraging collaborative defenders to counter jailbreak attacks. It integrates four defensive agents, Threat Interceptor, Misdirection Controller, Forensic Tracker, and System Harmonizer, each performing a specialized security role and collaborating to complete a deceptive defense. To ensure a comprehensive evaluation, we introduce MTJ-Pro, a challenging multi-turn progressive jailbreak dataset that combines seven advanced jailbreak strategies designed to gradually deepen attack strategies across multi-turn attacks. Besides, we present two novel metrics: Mislead Success Rate (MSR) and Attack Resource Consumption (ARC), which provide more nuanced assessments of deceptive defense beyond conventional measures. Experimental results on GPT-4, GPT-3.5-turbo, Gemini-1.5-pro, and LLaMa-3.1 demonstrate that HoneyTrap achieves an average reduction of 68.77% in attack success rates compared to state-of-the-art baselines. Notably, even in a dedicated adaptive attacker setting with intensified conditions, HoneyTrap remains resilient, leveraging deceptive engagement to prolong interactions, significantly increasing the time and computational costs required for successful exploitation. Unlike simple rejection, HoneyTrap strategically wastes attacker resources without impacting benign queries, improving MSR and ARC by 118.11% and 149.16%, respectively.
Abstract:Latent tokens are gaining attention for enhancing reasoning in large language models (LLMs), yet their internal mechanisms remain unclear. This paper examines the problem from a reliability perspective, uncovering fundamental weaknesses: latent tokens function as uninterpretable placeholders rather than encoding faithful reasoning. While resistant to perturbation, they promote shortcut usage over genuine reasoning. We focus on Chain-of-Continuous-Thought (COCONUT), which claims better efficiency and stability than explicit Chain-of-Thought (CoT) while maintaining performance. We investigate this through two complementary approaches. First, steering experiments perturb specific token subsets, namely COCONUT and explicit CoT. Unlike CoT tokens, COCONUT tokens show minimal sensitivity to steering and lack reasoning-critical information. Second, shortcut experiments evaluate models under biased and out-of-distribution settings. Results on MMLU and HotpotQA demonstrate that COCONUT consistently exploits dataset artifacts, inflating benchmark performance without true reasoning. These findings reposition COCONUT as a pseudo-reasoning mechanism: it generates plausible traces that conceal shortcut dependence rather than faithfully representing reasoning processes.
Abstract:Federated learning (FL) enables multiple clients to collaboratively train machine learning models without exposing local data, balancing performance and privacy. However, domain shift and label heterogeneity across clients often hinder the generalization of the aggregated global model. Recently, large-scale vision-language models like CLIP have shown strong zero-shot classification capabilities, raising the question of how to effectively fine-tune CLIP across domains in a federated setting. In this work, we propose an adaptive federated prompt tuning framework, FedDEAP, to enhance CLIP's generalization in multi-domain scenarios. Our method includes the following three key components: (1) To mitigate the loss of domain-specific information caused by label-supervised tuning, we disentangle semantic and domain-specific features in images by using semantic and domain transformation networks with unbiased mappings; (2) To preserve domain-specific knowledge during global prompt aggregation, we introduce a dual-prompt design with a global semantic prompt and a local domain prompt to balance shared and personalized information; (3) To maximize the inclusion of semantic and domain information from images in the generated text features, we align textual and visual representations under the two learned transformations to preserve semantic and domain consistency. Theoretical analysis and extensive experiments on four datasets demonstrate the effectiveness of our method in enhancing the generalization of CLIP for federated image recognition across multiple domains.
Abstract:Previous work has showcased the intriguing capabilities of Large Language Models (LLMs) in instruction-following and rhetorical fluency. However, systematic exploration of their dual capabilities to autonomously persuade and resist persuasion, particularly in contexts involving psychological rhetoric, remains unexplored. In this paper, we first evaluate four commonly adopted LLMs by tasking them to alternately act as persuaders and listeners in adversarial dialogues. Empirical results show that persuader LLMs predominantly employ repetitive strategies, leading to low success rates. Then we introduce eleven comprehensive psychological persuasion strategies, finding that explicitly instructing LLMs to adopt specific strategies such as Fluency Effect and Repetition Effect significantly improves persuasion success rates. However, no ``one-size-fits-all'' strategy proves universally effective, with performance heavily dependent on contextual counterfactuals. Motivated by these observations, we propose an adaptive framework based on direct preference optimization that trains LLMs to autonomously select optimal strategies by leveraging persuasion results from strategy-specific responses as preference pairs. Experiments on three open-source LLMs confirm that the proposed adaptive psychological persuasion method effectively enables persuader LLMs to select optimal strategies, significantly enhancing their success rates while maintaining general capabilities. Our code is available at https://github.com/KalinaEine/PsychologicalPersuasion.
Abstract:As multimodal agents are increasingly trained to operate graphical user interfaces (GUIs) to complete user tasks, they face a growing threat from indirect prompt injection, attacks in which misleading instructions are embedded into the agent's visual environment, such as popups or chat messages, and misinterpreted as part of the intended task. A typical example is environmental injection, in which GUI elements are manipulated to influence agent behavior without directly modifying the user prompt. To address these emerging attacks, we propose EVA, a red teaming framework for indirect prompt injection which transforms the attack into a closed loop optimization by continuously monitoring an agent's attention distribution over the GUI and updating adversarial cues, keywords, phrasing, and layout, in response. Compared with prior one shot methods that generate fixed prompts without regard for how the model allocates visual attention, EVA dynamically adapts to emerging attention hotspots, yielding substantially higher attack success rates and far greater transferability across diverse GUI scenarios. We evaluate EVA on six widely used generalist and specialist GUI agents in realistic settings such as popup manipulation, chat based phishing, payments, and email composition. Experimental results show that EVA substantially improves success rates over static baselines. Under goal agnostic constraints, where the attacker does not know the agent's task intent, EVA still discovers effective patterns. Notably, we find that injection styles transfer well across models, revealing shared behavioral biases in GUI agents. These results suggest that evolving indirect prompt injection is a powerful tool not only for red teaming agents, but also for uncovering common vulnerabilities in their multimodal decision making.
Abstract:Graphical user interface (GUI) agents powered by multimodal large language models (MLLMs) have shown greater promise for human-interaction. However, due to the high fine-tuning cost, users often rely on open-source GUI agents or APIs offered by AI providers, which introduces a critical but underexplored supply chain threat: backdoor attacks. In this work, we first unveil that MLLM-powered GUI agents naturally expose multiple interaction-level triggers, such as historical steps, environment states, and task progress. Based on this observation, we introduce AgentGhost, an effective and stealthy framework for red-teaming backdoor attacks. Specifically, we first construct composite triggers by combining goal and interaction levels, allowing GUI agents to unintentionally activate backdoors while ensuring task utility. Then, we formulate backdoor injection as a Min-Max optimization problem that uses supervised contrastive learning to maximize the feature difference across sample classes at the representation space, improving flexibility of the backdoor. Meanwhile, it adopts supervised fine-tuning to minimize the discrepancy between backdoor and clean behavior generation, enhancing effectiveness and utility. Extensive evaluations of various agent models in two established mobile benchmarks show that AgentGhost is effective and generic, with attack accuracy that reaches 99.7\% on three attack objectives, and shows stealthiness with only 1\% utility degradation. Furthermore, we tailor a defense method against AgentGhost that reduces the attack accuracy to 22.1\%. Our code is available at \texttt{anonymous}.
Abstract:The Multimodal Large Language Model (MLLM) is currently experiencing rapid growth, driven by the advanced capabilities of LLMs. Unlike earlier specialists, existing MLLMs are evolving towards a Multimodal Generalist paradigm. Initially limited to understanding multiple modalities, these models have advanced to not only comprehend but also generate across modalities. Their capabilities have expanded from coarse-grained to fine-grained multimodal understanding and from supporting limited modalities to arbitrary ones. While many benchmarks exist to assess MLLMs, a critical question arises: Can we simply assume that higher performance across tasks indicates a stronger MLLM capability, bringing us closer to human-level AI? We argue that the answer is not as straightforward as it seems. This project introduces General-Level, an evaluation framework that defines 5-scale levels of MLLM performance and generality, offering a methodology to compare MLLMs and gauge the progress of existing systems towards more robust multimodal generalists and, ultimately, towards AGI. At the core of the framework is the concept of Synergy, which measures whether models maintain consistent capabilities across comprehension and generation, and across multiple modalities. To support this evaluation, we present General-Bench, which encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325,800 instances. The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists, highlighting the challenges in reaching genuine AI. We expect this project to pave the way for future research on next-generation multimodal foundation models, providing a robust infrastructure to accelerate the realization of AGI. Project page: https://generalist.top/
Abstract:Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that exhibit consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in encoding personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly encode personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.
Abstract:Multi-Modal Large Language Models (MLLMs) have exhibited remarkable performance on various vision-language tasks such as Visual Question Answering (VQA). Despite accumulating evidence of privacy concerns associated with task-relevant content, it remains unclear whether MLLMs inadvertently memorize private content that is entirely irrelevant to the training tasks. In this paper, we investigate how randomly generated task-irrelevant private content can become spuriously correlated with downstream objectives due to partial mini-batch training dynamics, thus causing inadvertent memorization. Concretely, we randomly generate task-irrelevant watermarks into VQA fine-tuning images at varying probabilities and propose a novel probing framework to determine whether MLLMs have inadvertently encoded such content. Our experiments reveal that MLLMs exhibit notably different training behaviors in partial mini-batch settings with task-irrelevant watermarks embedded. Furthermore, through layer-wise probing, we demonstrate that MLLMs trigger distinct representational patterns when encountering previously seen task-irrelevant knowledge, even if this knowledge does not influence their output during prompting. Our code is available at https://github.com/illusionhi/ProbingPrivacy.




Abstract:Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of corporation and tool use in multi-agent systems (MASs). However, the robustness of these LLM-based MASs, especially under knowledge conflicts, remains unclear. In this paper, we design four comprehensive metrics to investigate the robustness of MASs when facing mild or task-critical knowledge conflicts. We first analyze mild knowledge conflicts introduced by heterogeneous agents and find that they do not harm system robustness but instead improve collaborative decision-making. Next, we investigate task-critical knowledge conflicts by synthesizing knowledge conflicts and embedding them into one of the agents. Our results show that these conflicts have surprisingly little to no impact on MAS robustness. Furthermore, we observe that MASs demonstrate certain self-repairing capabilities by reducing their reliance on knowledge conflicts and adopting alternative solution paths to maintain stability. Finally, we conduct ablation studies on the knowledge conflict number, agent number, and interaction rounds, finding that the self-repairing capability of MASs has intrinsic limits, and all findings hold consistently across various factors. Our code is publicly available at https://github.com/wbw625/MultiAgentRobustness.