Abstract:The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.
Abstract:Large language models (LLMs) have raised concerns about potential security threats despite performing significantly in Natural Language Processing (NLP). Backdoor attacks initially verified that LLM is doing substantial harm at all stages, but the cost and robustness have been criticized. Attacking LLMs is inherently risky in security review, while prohibitively expensive. Besides, the continuous iteration of LLMs will degrade the robustness of backdoors. In this paper, we propose TrojanRAG, which employs a joint backdoor attack in the Retrieval-Augmented Generation, thereby manipulating LLMs in universal attack scenarios. Specifically, the adversary constructs elaborate target contexts and trigger sets. Multiple pairs of backdoor shortcuts are orthogonally optimized by contrastive learning, thus constraining the triggering conditions to a parameter subspace to improve the matching. To improve the recall of the RAG for the target contexts, we introduce a knowledge graph to construct structured data to achieve hard matching at a fine-grained level. Moreover, we normalize the backdoor scenarios in LLMs to analyze the real harm caused by backdoors from both attackers' and users' perspectives and further verify whether the context is a favorable tool for jailbreaking models. Extensive experimental results on truthfulness, language understanding, and harmfulness show that TrojanRAG exhibits versatility threats while maintaining retrieval capabilities on normal queries.
Abstract:Control Area Network (CAN) is an essential communication protocol that interacts between Electronic Control Units (ECUs) in the vehicular network. However, CAN is facing stringent security challenges due to innate security risks. Intrusion detection systems (IDSs) are a crucial safety component in remediating Vehicular Electronics and Systems vulnerabilities. However, existing IDSs fail to identify complexity attacks and have higher false alarms owing to capability bottleneck. In this paper, we propose a self-supervised multi-knowledge fused anomaly detection model, called MKF-ADS. Specifically, the method designs an integration framework, including spatial-temporal correlation with an attention mechanism (STcAM) module and patch sparse-transformer module (PatchST). The STcAM with fine-pruning uses one-dimensional convolution (Conv1D) to extract spatial features and subsequently utilizes the Bidirectional Long Short Term Memory (Bi-LSTM) to extract the temporal features, where the attention mechanism will focus on the important time steps. Meanwhile, the PatchST captures the combined contextual features from independent univariate time series. Finally, the proposed method is based on knowledge distillation to STcAM as a student model for learning intrinsic knowledge and cross the ability to mimic PatchST. We conduct extensive experiments on six simulation attack scenarios across various CAN IDs and time steps, and two real attack scenarios, which present a competitive prediction and detection performance. Compared with the baseline in the same paradigm, the error rate and FAR are 2.62\% and 2.41\% and achieve a promising F1-score of 97.3\%.
Abstract:Pre-trained language models (PLMs) have been found susceptible to backdoor attacks, which can transfer vulnerabilities to various downstream tasks. However, existing PLM backdoors are conducted with explicit triggers under the manually aligned, thus failing to satisfy expectation goals simultaneously in terms of effectiveness, stealthiness, and universality. In this paper, we propose a novel approach to achieve invisible and general backdoor implantation, called \textbf{Syntactic Ghost} (synGhost for short). Specifically, the method hostilely manipulates poisoned samples with different predefined syntactic structures as stealth triggers and then implants the backdoor to pre-trained representation space without disturbing the primitive knowledge. The output representations of poisoned samples are distributed as uniformly as possible in the feature space via contrastive learning, forming a wide range of backdoors. Additionally, in light of the unique properties of syntactic triggers, we introduce an auxiliary module to drive the PLMs to learn this knowledge in priority, which can alleviate the interference between different syntactic structures. Experiments show that our method outperforms the previous methods and achieves the predefined objectives. Not only do severe threats to various natural language understanding (NLU) tasks on two tuning paradigms but also to multiple PLMs. Meanwhile, the synGhost is imperceptible against three countermeasures based on perplexity, fine-pruning, and the proposed maxEntropy.
Abstract:Despite the notable success of language models (LMs) in various natural language processing (NLP) tasks, the reliability of LMs is susceptible to backdoor attacks. Prior research attempts to mitigate backdoor learning while training the LMs on the poisoned dataset, yet struggles against complex backdoor attacks in real-world scenarios. In this paper, we investigate the learning mechanisms of backdoor LMs in the frequency space by Fourier analysis. Our findings indicate that the backdoor mapping presented on the poisoned datasets exhibits a more discernible inclination towards lower frequency compared to clean mapping, resulting in the faster convergence of backdoor mapping. To alleviate this dilemma, we propose Multi-Scale Low-Rank Adaptation (MuScleLoRA), which deploys multiple radial scalings in the frequency space with low-rank adaptation to the target model and further aligns the gradients when updating parameters. Through downscaling in the frequency space, MuScleLoRA encourages the model to prioritize the learning of relatively high-frequency clean mapping, consequently mitigating backdoor learning. Experimental results demonstrate that MuScleLoRA outperforms baselines significantly. Notably, MuScleLoRA reduces the average success rate of diverse backdoor attacks to below 15\% across multiple datasets and generalizes to various backbone LMs, including BERT, RoBERTa, and Llama2. The codes are available at https://github.com/ZrW00/MuScleLoRA.
Abstract:Intrusion detection is an important defensive measure for the security of automotive communications. Accurate frame detection models assist vehicles to avoid malicious attacks. Uncertainty and diversity regarding attack methods make this task challenging. However, the existing works have the limitation of only considering local features or the weak feature mapping of multi-features. To address these limitations, we present a novel model for automotive intrusion detection by spatial-temporal correlation features of in-vehicle communication traffic (STC-IDS). Specifically, the proposed model exploits an encoding-detection architecture. In the encoder part, spatial and temporal relations are encoded simultaneously. To strengthen the relationship between features, the attention-based convolution network still captures spatial and channel features to increase the receptive field, while attention-LSTM build important relationships from previous time series or crucial bytes. The encoded information is then passed to the detector for generating forceful spatial-temporal attention features and enabling anomaly classification. In particular, single-frame and multi-frame models are constructed to present different advantages respectively. Under automatic hyper-parameter selection based on Bayesian optimization, the model is trained to attain the best performance. Extensive empirical studies based on a real-world vehicle attack dataset demonstrate that STC-IDS has outperformed baseline methods and cables fewer false-positive rates while maintaining efficiency.