Abstract:In federated learning (FL), accommodating clients' varied computational capacities poses a challenge, often limiting the participation of those with constrained resources in global model training. To address this issue, the concept of model heterogeneity through submodel extraction has emerged, offering a tailored solution that aligns the model's complexity with each client's computational capacity. In this work, we propose Federated Importance-Aware Submodel Extraction (FIARSE), a novel approach that dynamically adjusts submodels based on the importance of model parameters, thereby overcoming the limitations of previous static and dynamic submodel extraction methods. Compared to existing works, the proposed method offers a theoretical foundation for the submodel extraction and eliminates the need for additional information beyond the model parameters themselves to determine parameter importance, significantly reducing the overhead on clients. Extensive experiments are conducted on various datasets to showcase superior performance of the proposed FIARSE.
Abstract:Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers. Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data. This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.
Abstract:Naturalistic driving action recognition (NDAR) has proven to be an effective method for detecting driver distraction and reducing the risk of traffic accidents. However, the intrusive design of in-cabin cameras raises concerns about driver privacy. To address this issue, we propose a novel peer-to-peer (P2P) federated learning (FL) framework with continual learning, namely FedPC, which ensures privacy and enhances learning efficiency while reducing communication, computational, and storage overheads. Our framework focuses on addressing the clients' objectives within a serverless FL framework, with the goal of delivering personalized and accurate NDAR models. We demonstrate and evaluate the performance of FedPC on two real-world NDAR datasets, including the State Farm Distracted Driver Detection and Track 3 NDAR dataset in the 2023 AICity Challenge. The results of our experiments highlight the strong competitiveness of FedPC compared to the conventional client-to-server (C2S) FLs in terms of performance, knowledge dissemination rate, and compatibility with new clients.
Abstract:Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity $s$-induced Fairness ($s_\gamma$-SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of over existing methods $s_\gamma$-SimFair on multi-label classification tasks.
Abstract:Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring application (DMA) on the internet of vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two datasets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, personalized framework for DMA.
Abstract:Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph.Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE' robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks.
Abstract:Recent advances in deep learning motivate the use of deep neural networks in Internet-of-Things (IoT) applications. These networks are modelled after signal processing in the human brain, thereby leading to significant advantages at perceptual tasks such as vision and speech recognition. IoT applications, however, often measure physical phenomena, where the underlying physics (such as inertia, wireless signal propagation, or the natural frequency of oscillation) are fundamentally a function of signal frequencies, offering better features in the frequency domain. This observation leads to a fundamental question: For IoT applications, can one develop a new brand of neural network structures that synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics? Hence, in this paper, instead of using conventional building blocks (e.g., convolutional and recurrent layers), we propose a new foundational neural network building block, the Short-Time Fourier Neural Network (STFNet). It integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better foot-prints. STFNets bring additional flexibility to time-frequency analysis by offering novel nonlinear learnable operations that are spectral-compatible. Moreover, STFNets show that transforming signals to a domain that is more connected to the underlying physics greatly simplifies the learning process. We demonstrate the effectiveness of STFNets with extensive experiments. STFNets significantly outperform the state-of-the-art deep learning models in all experiments. A STFNet, therefore, demonstrates superior capability as the fundamental building block of deep neural networks for IoT applications for various sensor inputs.
Abstract:Nowadays, crowd sensing becomes increasingly more popular due to the ubiquitous usage of mobile devices. However, the quality of such human-generated sensory data varies significantly among different users. To better utilize sensory data, the problem of truth discovery, whose goal is to estimate user quality and infer reliable aggregated results through quality-aware data aggregation, has emerged as a hot topic. Although the existing truth discovery approaches can provide reliable aggregated results, they fail to protect the private information of individual users. Moreover, crowd sensing systems typically involve a large number of participants, making encryption or secure multi-party computation based solutions difficult to deploy. To address these challenges, in this paper, we propose an efficient privacy-preserving truth discovery mechanism with theoretical guarantees of both utility and privacy. The key idea of the proposed mechanism is to perturb data from each user independently and then conduct weighted aggregation among users' perturbed data. The proposed approach is able to assign user weights based on information quality, and thus the aggregated results will not deviate much from the true results even when large noise is added. We adapt local differential privacy definition to this privacy-preserving task and demonstrate the proposed mechanism can satisfy local differential privacy while preserving high aggregation accuracy. We formally quantify utility and privacy trade-off and further verify the claim by experiments on both synthetic data and a real-world crowd sensing system.
Abstract:Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by $48\%$ to $78\%$ and energy consumption by $37\%$ to $69\%$ compared with the state-of-the-art compression algorithms.
Abstract:Recent advances in deep learning motivate the use of deep neutral networks in sensing applications, but their excessive resource needs on constrained embedded devices remain an important impediment. A recently explored solution space lies in compressing (approximating or simplifying) deep neural networks in some manner before use on the device. We propose a new compression solution, called DeepIoT, that makes two key contributions in that space. First, unlike current solutions geared for compressing specific types of neural networks, DeepIoT presents a unified approach that compresses all commonly used deep learning structures for sensing applications, including fully-connected, convolutional, and recurrent neural networks, as well as their combinations. Second, unlike solutions that either sparsify weight matrices or assume linear structure within weight matrices, DeepIoT compresses neural network structures into smaller dense matrices by finding the minimum number of non-redundant hidden elements, such as filters and dimensions required by each layer, while keeping the performance of sensing applications the same. Importantly, it does so using an approach that obtains a global view of parameter redundancies, which is shown to produce superior compression. We conduct experiments with five different sensing-related tasks on Intel Edison devices. DeepIoT outperforms all compared baseline algorithms with respect to execution time and energy consumption by a significant margin. It reduces the size of deep neural networks by 90% to 98.9%. It is thus able to shorten execution time by 71.4% to 94.5%, and decrease energy consumption by 72.2% to 95.7%. These improvements are achieved without loss of accuracy. The results underscore the potential of DeepIoT for advancing the exploitation of deep neural networks on resource-constrained embedded devices.