Abstract:Vision-based target tracking is crucial for unmanned surface vehicles (USVs) to perform tasks such as inspection, monitoring, and surveillance. However, real-time tracking in complex maritime environments is challenging due to dynamic camera movement, low visibility, and scale variation. Typically, object detection methods combined with filtering techniques are commonly used for tracking, but they often lack robustness, particularly in the presence of camera motion and missed detections. Although advanced tracking methods have been proposed recently, their application in maritime scenarios is limited. To address this gap, this study proposes a vision-guided object-tracking framework for USVs, integrating state-of-the-art tracking algorithms with low-level control systems to enable precise tracking in dynamic maritime environments. We benchmarked the performance of seven distinct trackers, developed using advanced deep learning techniques such as Siamese Networks and Transformers, by evaluating them on both simulated and real-world maritime datasets. In addition, we evaluated the robustness of various control algorithms in conjunction with these tracking systems. The proposed framework was validated through simulations and real-world sea experiments, demonstrating its effectiveness in handling dynamic maritime conditions. The results show that SeqTrack, a Transformer-based tracker, performed best in adverse conditions, such as dust storms. Among the control algorithms evaluated, the linear quadratic regulator controller (LQR) demonstrated the most robust and smooth control, allowing for stable tracking of the USV.
Abstract:Performing complex manipulation tasks in dynamic environments requires efficient Task and Motion Planning (TAMP) approaches, which combine high-level symbolic plan with low-level motion planning. Advances in Large Language Models (LLMs), such as GPT-4, are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks, generate symbolic plans, and reason. However, the effectiveness of LLM-based TAMP approaches is limited due to static and template-based prompting, which struggles in adapting to dynamic environments and complex task contexts. To address these limitations, this work proposes a novel ontology-driven prompt-tuning framework that employs knowledge-based reasoning to refine and expand user prompts with task contextual reasoning and knowledge-based environment state descriptions. Integrating domain-specific knowledge into the prompt ensures semantically accurate and context-aware task plans. The proposed framework demonstrates its effectiveness by resolving semantic errors in symbolic plan generation, such as maintaining logical temporal goal ordering in scenarios involving hierarchical object placement. The proposed framework is validated through both simulation and real-world scenarios, demonstrating significant improvements over the baseline approach in terms of adaptability to dynamic environments, and the generation of semantically correct task plans.
Abstract:This paper presents an autonomous aerial system specifically engineered for operation in challenging marine GNSS-denied environments, aimed at transporting small cargo from a target vessel. In these environments, characterized by weakly textured sea surfaces with few feature points, chaotic deck oscillations due to waves, and significant wind gusts, conventional navigation methods often prove inadequate. Leveraging the DJI M300 platform, our system is designed to autonomously navigate and transport cargo while overcoming these environmental challenges. In particular, this paper proposes an anchor-based localization method using ultrawideband (UWB) and QR codes facilities, which decouples the UAV's attitude from that of the moving landing platform, thus reducing control oscillations caused by platform movement. Additionally, a motor-driven attachment mechanism for cargo is designed, which enhances the UAV's field of view during descent and ensures a reliable attachment to the cargo upon landing. The system's reliability and effectiveness were progressively enhanced through multiple outdoor experimental iterations and were validated by the successful cargo transport during the 2024 Mohamed BinZayed International Robotics Challenge (MBZIRC2024) competition. Crucially, the system addresses uncertainties and interferences inherent in maritime transportation missions without prior knowledge of cargo locations on the deck and with strict limitations on intervention throughout the transportation.
Abstract:Autonomous space rovers face significant challenges when navigating deformable and heterogeneous terrains during space exploration. The variability in terrain types, influenced by different soil properties, often results in severe wheel slip, compromising navigation efficiency and potentially leading to entrapment. This paper proposes SlipNet, an approach for predicting slip in segmented regions of heterogeneous deformable terrain surfaces to enhance navigation algorithms. Unlike previous methods, SlipNet does not depend on prior terrain classification, reducing prediction errors and misclassifications through dynamic terrain segmentation and slip assignment during deployment while maintaining a history of terrain classes. This adaptive reclassification mechanism has improved prediction performance. Extensive simulation results demonstrate that our model (DeepLab v3+ + SlipNet) achieves better slip prediction performance than the TerrainNet, with a lower mean absolute error (MAE) in five terrain sample tests.
Abstract:The global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments. However, GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks. Thus, an alternative navigation system is required when the use of GPS is restricted or prohibited. To this end, we present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in GNSS-restricted marine environments. In our approach, the UAV flies along the shoreline at a consistent altitude, continuously tracking and detecting the USV using a deep learning-based approach on camera images. Subsequently, triangulation techniques are applied to estimate the USV's position relative to the UAV, utilizing geometric information and datalink range from the UAV. We propose adjusting the UAV's camera angle based on the pixel error between the USV and the image center throughout the localization process to enhance accuracy. Additionally, visual measurements are integrated into an Extended Kalman Filter (EKF) for robust state estimation. To validate our proposed method, we utilize a USV equipped with onboard sensors and a UAV equipped with a camera. A heterogeneous robotic interface is established to facilitate communication between the USV and UAV. We demonstrate the efficacy of our approach through a series of experiments conducted during the ``Muhammad Bin Zayed International Robotic Challenge (MBZIRC-2024)'' in real marine environments, incorporating noisy measurements and ocean disturbances. The successful outcomes indicate the potential of our method to complement GPS for USV navigation.
Abstract:Moving object segmentation is critical to interpret scene dynamics for robotic navigation systems in challenging environments. Neuromorphic vision sensors are tailored for motion perception due to their asynchronous nature, high temporal resolution, and reduced power consumption. However, their unconventional output requires novel perception paradigms to leverage their spatially sparse and temporally dense nature. In this work, we propose a novel event-based motion segmentation algorithm using a Graph Transformer Neural Network, dubbed GTNN. Our proposed algorithm processes event streams as 3D graphs by a series of nonlinear transformations to unveil local and global spatiotemporal correlations between events. Based on these correlations, events belonging to moving objects are segmented from the background without prior knowledge of the dynamic scene geometry. The algorithm is trained on publicly available datasets including MOD, EV-IMO, and \textcolor{black}{EV-IMO2} using the proposed training scheme to facilitate efficient training on extensive datasets. Moreover, we introduce the Dynamic Object Mask-aware Event Labeling (DOMEL) approach for generating approximate ground-truth labels for event-based motion segmentation datasets. We use DOMEL to label our own recorded Event dataset for Motion Segmentation (EMS-DOMEL), which we release to the public for further research and benchmarking. Rigorous experiments are conducted on several unseen publicly-available datasets where the results revealed that GTNN outperforms state-of-the-art methods in the presence of dynamic background variations, motion patterns, and multiple dynamic objects with varying sizes and velocities. GTNN achieves significant performance gains with an average increase of 9.4% and 4.5% in terms of motion segmentation accuracy (IoU%) and detection rate (DR%), respectively.
Abstract:Tomato leaf diseases pose a significant challenge for tomato farmers, resulting in substantial reductions in crop productivity. The timely and precise identification of tomato leaf diseases is crucial for successfully implementing disease management strategies. This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection. The paper's primary contributions include the following: Firstly, we present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network. Secondly, we aim to apply our proposed methodology to the Hello Stretch robot to achieve real-time diagnosis of tomato leaf diseases. Thirdly, we assessed our method by comparing it to models like YOLOS, DETR, ViT, and Swin, demonstrating its ability to achieve state-of-the-art outcomes. For the purpose of the experiment, we used three datasets of tomato leaf diseases, namely KUTomaDATA, PlantDoc, and PlanVillage, where KUTomaDATA is being collected from a greenhouse in Abu Dhabi, UAE. Finally, we present a comprehensive analysis of the performance of our model and thoroughly discuss the limitations inherent in our approach. TomFormer performed well on the KUTomaDATA, PlantDoc, and PlantVillage datasets, with mean average accuracy (mAP) scores of 87%, 81%, and 83%, respectively. The comparative results in terms of mAP demonstrate that our method exhibits robustness, accuracy, efficiency, and scalability. Furthermore, it can be readily adapted to new datasets. We are confident that our work holds the potential to significantly influence the tomato industry by effectively mitigating crop losses and enhancing crop yields.
Abstract:The underwater environment presents unique challenges, including color distortions, reduced contrast, and blurriness, hindering accurate analysis. In this work, we introduce MuLA-GAN, a novel approach that leverages the synergistic power of Generative Adversarial Networks (GANs) and Multi-Level Attention mechanisms for comprehensive underwater image enhancement. The integration of Multi-Level Attention within the GAN architecture significantly enhances the model's capacity to learn discriminative features crucial for precise image restoration. By selectively focusing on relevant spatial and multi-level features, our model excels in capturing and preserving intricate details in underwater imagery, essential for various applications. Extensive qualitative and quantitative analyses on diverse datasets, including UIEB test dataset, UIEB challenge dataset, U45, and UCCS dataset, highlight the superior performance of MuLA-GAN compared to existing state-of-the-art methods. Experimental evaluations on a specialized dataset tailored for bio-fouling and aquaculture applications demonstrate the model's robustness in challenging environmental conditions. On the UIEB test dataset, MuLA-GAN achieves exceptional PSNR (25.59) and SSIM (0.893) scores, surpassing Water-Net, the second-best model, with scores of 24.36 and 0.885, respectively. This work not only addresses a significant research gap in underwater image enhancement but also underscores the pivotal role of Multi-Level Attention in enhancing GANs, providing a novel and comprehensive framework for restoring underwater image quality.
Abstract:Underwater robotic vision encounters significant challenges, necessitating advanced solutions to enhance performance and adaptability. This paper presents MARS (Multi-Scale Adaptive Robotics Vision), a novel approach to underwater object detection tailored for diverse underwater scenarios. MARS integrates Residual Attention YOLOv3 with Domain-Adaptive Multi-Scale Attention (DAMSA) to enhance detection accuracy and adapt to different domains. During training, DAMSA introduces domain class-based attention, enabling the model to emphasize domain-specific features. Our comprehensive evaluation across various underwater datasets demonstrates MARS's performance. On the original dataset, MARS achieves a mean Average Precision (mAP) of 58.57\%, showcasing its proficiency in detecting critical underwater objects like echinus, starfish, holothurian, scallop, and waterweeds. This capability holds promise for applications in marine robotics, marine biology research, and environmental monitoring. Furthermore, MARS excels at mitigating domain shifts. On the augmented dataset, which incorporates all enhancements (+Domain +Residual+Channel Attention+Multi-Scale Attention), MARS achieves an mAP of 36.16\%. This result underscores its robustness and adaptability in recognizing objects and performing well across a range of underwater conditions. The source code for MARS is publicly available on GitHub at https://github.com/LyesSaadSaoud/MARS-Object-Detection/
Abstract:This research presents ADOD, a novel approach to address domain generalization in underwater object detection. Our method enhances the model's ability to generalize across diverse and unseen domains, ensuring robustness in various underwater environments. The first key contribution is Residual Attention YOLOv3, a novel variant of the YOLOv3 framework empowered by residual attention modules. These modules enable the model to focus on informative features while suppressing background noise, leading to improved detection accuracy and adaptability to different domains. The second contribution is the attention-based domain classification module, vital during training. This module helps the model identify domain-specific information, facilitating the learning of domain-invariant features. Consequently, ADOD can generalize effectively to underwater environments with distinct visual characteristics. Extensive experiments on diverse underwater datasets demonstrate ADOD's superior performance compared to state-of-the-art domain generalization methods, particularly in challenging scenarios. The proposed model achieves exceptional detection performance in both seen and unseen domains, showcasing its effectiveness in handling domain shifts in underwater object detection tasks. ADOD represents a significant advancement in adaptive object detection, providing a promising solution for real-world applications in underwater environments. With the prevalence of domain shifts in such settings, the model's strong generalization ability becomes a valuable asset for practical underwater surveillance and marine research endeavors.