Abstract:Autonomous space rovers face significant challenges when navigating deformable and heterogeneous terrains during space exploration. The variability in terrain types, influenced by different soil properties, often results in severe wheel slip, compromising navigation efficiency and potentially leading to entrapment. This paper proposes SlipNet, an approach for predicting slip in segmented regions of heterogeneous deformable terrain surfaces to enhance navigation algorithms. Unlike previous methods, SlipNet does not depend on prior terrain classification, reducing prediction errors and misclassifications through dynamic terrain segmentation and slip assignment during deployment while maintaining a history of terrain classes. This adaptive reclassification mechanism has improved prediction performance. Extensive simulation results demonstrate that our model (DeepLab v3+ + SlipNet) achieves better slip prediction performance than the TerrainNet, with a lower mean absolute error (MAE) in five terrain sample tests.
Abstract:A thorough analysis of wheel-terrain interaction is critical to ensure the safe and efficient operation of space rovers on extraterrestrial surfaces like the Moon or Mars. This paper presents an approach for developing and experimentally validating a virtual wheel-terrain interaction model for the UAE Rashid rover. The model aims to improve the fidelity and capability of current simulation methods for space rovers and facilitate the design, evaluation, and control of their locomotion systems. The proposed method considers various factors, such as wheel grouser properties, wheel slippage, loose soil properties, and interaction mechanics. The model accuracy was validated through experiments on a Test-rig testbed that simulated lunar soil conditions. In specific, a set of experiments was carried out to test the behaviors acted on a Grouser-Rashid rover wheel by the lunar soil with different slip ratios of 0, 0.25, 0.50, and 0.75. The obtained results demonstrate that the proposed simulation method provides a more accurate and realistic simulation of the wheel-terrain interaction behavior and provides insight into the overall performance of the rover