Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
Abstract:The presence of post-stroke grasping deficiencies highlights the critical need for the development and implementation of advanced compensatory strategies. This paper introduces a novel system to aid chronic stroke survivors through the development of a soft, vision-based, tactile-enabled extra robotic finger. By incorporating vision-based tactile sensing, the system autonomously adjusts grip force in response to slippage detection. This synergy not only ensures mechanical stability but also enriches tactile feedback, mimicking the dynamics of human-object interactions. At the core of our approach is a transformer-based framework trained on a comprehensive tactile dataset encompassing objects with a wide range of morphological properties, including variations in shape, size, weight, texture, and hardness. Furthermore, we validated the system's robustness in real-world applications, where it successfully manipulated various everyday objects. The promising results highlight the potential of this approach to improve the quality of life for stroke survivors.
Abstract:Vision-based target tracking is crucial for unmanned surface vehicles (USVs) to perform tasks such as inspection, monitoring, and surveillance. However, real-time tracking in complex maritime environments is challenging due to dynamic camera movement, low visibility, and scale variation. Typically, object detection methods combined with filtering techniques are commonly used for tracking, but they often lack robustness, particularly in the presence of camera motion and missed detections. Although advanced tracking methods have been proposed recently, their application in maritime scenarios is limited. To address this gap, this study proposes a vision-guided object-tracking framework for USVs, integrating state-of-the-art tracking algorithms with low-level control systems to enable precise tracking in dynamic maritime environments. We benchmarked the performance of seven distinct trackers, developed using advanced deep learning techniques such as Siamese Networks and Transformers, by evaluating them on both simulated and real-world maritime datasets. In addition, we evaluated the robustness of various control algorithms in conjunction with these tracking systems. The proposed framework was validated through simulations and real-world sea experiments, demonstrating its effectiveness in handling dynamic maritime conditions. The results show that SeqTrack, a Transformer-based tracker, performed best in adverse conditions, such as dust storms. Among the control algorithms evaluated, the linear quadratic regulator controller (LQR) demonstrated the most robust and smooth control, allowing for stable tracking of the USV.
Abstract:Performing complex manipulation tasks in dynamic environments requires efficient Task and Motion Planning (TAMP) approaches, which combine high-level symbolic plan with low-level motion planning. Advances in Large Language Models (LLMs), such as GPT-4, are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks, generate symbolic plans, and reason. However, the effectiveness of LLM-based TAMP approaches is limited due to static and template-based prompting, which struggles in adapting to dynamic environments and complex task contexts. To address these limitations, this work proposes a novel ontology-driven prompt-tuning framework that employs knowledge-based reasoning to refine and expand user prompts with task contextual reasoning and knowledge-based environment state descriptions. Integrating domain-specific knowledge into the prompt ensures semantically accurate and context-aware task plans. The proposed framework demonstrates its effectiveness by resolving semantic errors in symbolic plan generation, such as maintaining logical temporal goal ordering in scenarios involving hierarchical object placement. The proposed framework is validated through both simulation and real-world scenarios, demonstrating significant improvements over the baseline approach in terms of adaptability to dynamic environments, and the generation of semantically correct task plans.
Abstract:This paper presents an autonomous aerial system specifically engineered for operation in challenging marine GNSS-denied environments, aimed at transporting small cargo from a target vessel. In these environments, characterized by weakly textured sea surfaces with few feature points, chaotic deck oscillations due to waves, and significant wind gusts, conventional navigation methods often prove inadequate. Leveraging the DJI M300 platform, our system is designed to autonomously navigate and transport cargo while overcoming these environmental challenges. In particular, this paper proposes an anchor-based localization method using ultrawideband (UWB) and QR codes facilities, which decouples the UAV's attitude from that of the moving landing platform, thus reducing control oscillations caused by platform movement. Additionally, a motor-driven attachment mechanism for cargo is designed, which enhances the UAV's field of view during descent and ensures a reliable attachment to the cargo upon landing. The system's reliability and effectiveness were progressively enhanced through multiple outdoor experimental iterations and were validated by the successful cargo transport during the 2024 Mohamed BinZayed International Robotics Challenge (MBZIRC2024) competition. Crucially, the system addresses uncertainties and interferences inherent in maritime transportation missions without prior knowledge of cargo locations on the deck and with strict limitations on intervention throughout the transportation.
Abstract:The decline of bee and wind-based pollination systems in greenhouses due to controlled environments and limited access has boost the importance of finding alternative pollination methods. Robotic based pollination systems have emerged as a promising solution, ensuring adequate crop yield even in challenging pollination scenarios. This paper presents a comprehensive review of the current robotic-based pollinators employed in greenhouses. The review categorizes pollinator technologies into major categories such as air-jet, water-jet, linear actuator, ultrasonic wave, and air-liquid spray, each suitable for specific crop pollination requirements. However, these technologies are often tailored to particular crops, limiting their versatility. The advancement of science and technology has led to the integration of automated pollination technology, encompassing information technology, automatic perception, detection, control, and operation. This integration not only reduces labor costs but also fosters the ongoing progress of modern agriculture by refining technology, enhancing automation, and promoting intelligence in agricultural practices. Finally, the challenges encountered in design of pollinator are addressed, and a forward-looking perspective is taken towards future developments, aiming to contribute to the sustainable advancement of this technology.
Abstract:Human activity recognition is a major field of study that employs computer vision, machine vision, and deep learning techniques to categorize human actions. The field of deep learning has made significant progress, with architectures that are extremely effective at capturing human dynamics. This study emphasizes the influence of feature fusion on the accuracy of activity recognition. This technique addresses the limitation of conventional models, which face difficulties in identifying activities because of their limited capacity to understand spatial and temporal features. The technique employs sensory data obtained from four publicly available datasets: HuGaDB, PKU-MMD, LARa, and TUG. The accuracy and F1-score of two deep learning models, specifically a Transformer model and a Parameter-Optimized Graph Convolutional Network (PO-GCN), were evaluated using these datasets. The feature fusion technique integrated the final layer features from both models and inputted them into a classifier. Empirical evidence demonstrates that PO-GCN outperforms standard models in activity recognition. HuGaDB demonstrated a 2.3% improvement in accuracy and a 2.2% increase in F1-score. TUG showed a 5% increase in accuracy and a 0.5% rise in F1-score. On the other hand, LARa and PKU-MMD achieved lower accuracies of 64% and 69% respectively. This indicates that the integration of features enhanced the performance of both the Transformer model and PO-GCN.
Abstract:The global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments. However, GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks. Thus, an alternative navigation system is required when the use of GPS is restricted or prohibited. To this end, we present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in GNSS-restricted marine environments. In our approach, the UAV flies along the shoreline at a consistent altitude, continuously tracking and detecting the USV using a deep learning-based approach on camera images. Subsequently, triangulation techniques are applied to estimate the USV's position relative to the UAV, utilizing geometric information and datalink range from the UAV. We propose adjusting the UAV's camera angle based on the pixel error between the USV and the image center throughout the localization process to enhance accuracy. Additionally, visual measurements are integrated into an Extended Kalman Filter (EKF) for robust state estimation. To validate our proposed method, we utilize a USV equipped with onboard sensors and a UAV equipped with a camera. A heterogeneous robotic interface is established to facilitate communication between the USV and UAV. We demonstrate the efficacy of our approach through a series of experiments conducted during the ``Muhammad Bin Zayed International Robotic Challenge (MBZIRC-2024)'' in real marine environments, incorporating noisy measurements and ocean disturbances. The successful outcomes indicate the potential of our method to complement GPS for USV navigation.
Abstract:Human activity recognition (HAR) is a crucial area of research that involves understanding human movements using computer and machine vision technology. Deep learning has emerged as a powerful tool for this task, with models such as Convolutional Neural Networks (CNNs) and Transformers being employed to capture various aspects of human motion. One of the key contributions of this work is the demonstration of the effectiveness of feature fusion in improving HAR accuracy by capturing spatial and temporal features, which has important implications for the development of more accurate and robust activity recognition systems. The study uses sensory data from HuGaDB, PKU-MMD, LARa, and TUG datasets. Two model, the PO-MS-GCN and a Transformer were trained and evaluated, with PO-MS-GCN outperforming state-of-the-art models. HuGaDB and TUG achieved high accuracies and f1-scores, while LARa and PKU-MMD had lower scores. Feature fusion improved results across datasets.
Abstract:Performing intervention tasks in the maritime domain is crucial for safety and operational efficiency. The unpredictable and dynamic marine environment makes the intervention tasks such as object manipulation extremely challenging. This study proposes a robust solution for object manipulation from a dock in the presence of disturbances caused by sea waves. To tackle this challenging problem, we apply a deep reinforcement learning (DRL) based algorithm called Soft. Actor-Critic (SAC). SAC employs an actor-critic framework; the actors learn a policy that minimizes an objective function while the critic evaluates the learned policy and provides feedback to guide the actor-learning process. We trained the agent using the PyBullet dynamic simulator and tested it in a realistic simulation environment called MBZIRC maritime simulator. This simulator allows the simulation of different wave conditions according to the World Meteorological Organization (WMO) sea state code. Simulation results demonstrate a high success rate in retrieving the objects from the dock. The trained agent achieved an 80 percent success rate when applied in the simulation environment in the presence of waves characterized by sea state 2, according to the WMO sea state code
Abstract:The dynamic motion primitive-based (DMP) method is an effective method of learning from demonstrations. However, most of the current DMP-based methods focus on learning one task with one module. Although, some deep learning-based frameworks can learn to multi-task at the same time. However, those methods require a large number of training data and have limited generalization of the learned behavior to the untrained state. In this paper, we propose a framework that combines the advantages of the traditional DMP-based method and conditional variational auto-encoder (CVAE). The encoder and decoder are made of a dynamic system and deep neural network. Deep neural networks are used to generate torque conditioned on the task ID. Then, this torque is used to create the desired trajectory in the dynamic system based on the final state. In this way, the generated tractory can adjust to the new goal position. We also propose a finetune method to guarantee the via-point constraint. Our model is trained on the handwriting number dataset and can be used to solve robotic tasks -- reaching and pushing directly. The proposed model is validated in the simulation environment. The results show that after training on the handwriting number dataset, it achieves a 100\% success rate on pushing and reaching tasks.