Abstract:Recent advancements in generative models have ignited substantial interest in dynamic 3D content creation (\ie, 4D generation). Existing approaches primarily rely on Score Distillation Sampling (SDS) to infer novel-view videos, typically leading to issues such as limited diversity, spatial-temporal inconsistency and poor prompt alignment, due to the inherent randomness of SDS. To tackle these problems, we propose AR4D, a novel paradigm for SDS-free 4D generation. Specifically, our paradigm consists of three stages. To begin with, for a monocular video that is either generated or captured, we first utilize pre-trained expert models to create a 3D representation of the first frame, which is further fine-tuned to serve as the canonical space. Subsequently, motivated by the fact that videos happen naturally in an autoregressive manner, we propose to generate each frame's 3D representation based on its previous frame's representation, as this autoregressive generation manner can facilitate more accurate geometry and motion estimation. Meanwhile, to prevent overfitting during this process, we introduce a progressive view sampling strategy, utilizing priors from pre-trained large-scale 3D reconstruction models. To avoid appearance drift introduced by autoregressive generation, we further incorporate a refinement stage based on a global deformation field and the geometry of each frame's 3D representation. Extensive experiments have demonstrated that AR4D can achieve state-of-the-art 4D generation without SDS, delivering greater diversity, improved spatial-temporal consistency, and better alignment with input prompts.
Abstract:Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Our code has been released at https://github.com/microsoft/VidTok/tree/main/vidtwin.
Abstract:Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.
Abstract:Residual networks, as discrete approximations of Ordinary Differential Equations (ODEs), have inspired significant advancements in neural network design, including multistep methods, high-order methods, and multi-particle dynamical systems. The precision of the solution to ODEs significantly affects parameter optimization, thereby impacting model performance. In this work, we present a series of advanced explorations of Transformer architecture design to minimize the error compared to the true ``solution.'' First, we introduce a predictor-corrector learning framework to minimize truncation errors, which consists of a high-order predictor and a multistep corrector. Second, we propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor. Extensive experiments on large-scale machine translation, abstractive summarization, language modeling, and natural language understanding benchmarks demonstrate the superiority of our approach. On the WMT'14 English-German and English-French tasks, our model achieved BLEU scores of 30.95 and 44.27, respectively. Furthermore, on the OPUS multilingual machine translation task, our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters. Notably, it also beats LLama models by 5.7 accuracy points on the LM Harness Evaluation.
Abstract:Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(\textit{e.g.}, scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: \url{https://aka.ms/c3v}.
Abstract:In-context learning for vision data has been underexplored compared with that in natural language. Previous works studied image in-context learning, urging models to generate a single image guided by demonstrations. In this paper, we propose and study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences, each semantically guided by the prompted video demonstrations. To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets. We thoroughly analyze the effect of different datasets and represent frames as discrete tokens, and then model them by next token predictions. We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results. Our model follows the scaling law and generates high-quality video clips that accurately align with the semantic guidance provided by in-context examples.
Abstract:We aim to edit the lip movements in talking video according to the given speech while preserving the personal identity and visual details. The task can be decomposed into two sub-problems: (1) speech-driven lip motion generation and (2) visual appearance synthesis. Current solutions handle the two sub-problems within a single generative model, resulting in a challenging trade-off between lip-sync quality and visual details preservation. Instead, we propose to disentangle the motion and appearance, and then generate them one by one with a speech-to-motion diffusion model and a motion-conditioned appearance generation model. However, there still remain challenges in each stage, such as motion-aware identity preservation in (1) and visual details preservation in (2). Therefore, to preserve personal identity, we adopt landmarks to represent the motion, and further employ a landmark-based identity loss. To capture motion-agnostic visual details, we use separate encoders to encode the lip, non-lip appearance and motion, and then integrate them with a learned fusion module. We train MyTalk on a large-scale and diverse dataset. Experiments show that our method generalizes well to the unknown, even out-of-domain person, in terms of both lip sync and visual detail preservation. We encourage the readers to watch the videos on our project page (https://Ingrid789.github.io/MyTalk/).
Abstract:Recent talking avatar generation models have made strides in achieving realistic and accurate lip synchronization with the audio, but often fall short in controlling and conveying detailed expressions and emotions of the avatar, making the generated video less vivid and controllable. In this paper, we propose a novel text-guided approach for generating emotionally expressive 2D avatars, offering fine-grained control, improved interactivity, and generalizability to the resulting video. Our framework, named InstructAvatar, leverages a natural language interface to control the emotion as well as the facial motion of avatars. Technically, we design an automatic annotation pipeline to construct an instruction-video paired training dataset, equipped with a novel two-branch diffusion-based generator to predict avatars with audio and text instructions at the same time. Experimental results demonstrate that InstructAvatar produces results that align well with both conditions, and outperforms existing methods in fine-grained emotion control, lip-sync quality, and naturalness. Our project page is https://wangyuchi369.github.io/InstructAvatar/.
Abstract:While large language models (LLMs) have achieved impressive performance across diverse tasks, recent studies showcase that causal LLMs suffer from the "reversal curse". It is a typical example that the model knows "A's father is B", but is unable to reason "B's child is A". This limitation poses a challenge to the advancement of artificial general intelligence (AGI), as it suggests a gap in the models' ability to comprehend and apply bidirectional reasoning. In this paper, we first conduct substantial evaluation and identify that the root cause of the reversal curse lies in the different word order between the training and inference stage, namely, the poor ability of causal language models to predict antecedent words within the training data. Accordingly, permutation on the training data is considered as a potential solution, since this can make the model predict antecedent words or tokens. However, previous permutation methods may disrupt complete phrases or entities, thereby posing challenges for the model to comprehend and learn from training data. To address this issue, we propose Semantic-aware Permutation Training (SPT), which addresses this issue by segmenting the training sentences into semantic units (i.e., entities or phrases) with an assistant language model and permuting these units before feeding into the model. Extensive experiments demonstrate that SPT effectively mitigates the reversal curse since the performance on reversed questions approximates that on the forward ones, and significantly advances the performance of existing works.
Abstract:Recent advances in text-guided video editing have showcased promising results in appearance editing (e.g., stylization). However, video motion editing in the temporal dimension (e.g., from eating to waving), which distinguishes video editing from image editing, is underexplored. In this work, we present UniEdit, a tuning-free framework that supports both video motion and appearance editing by harnessing the power of a pre-trained text-to-video generator within an inversion-then-generation framework. To realize motion editing while preserving source video content, based on the insights that temporal and spatial self-attention layers encode inter-frame and intra-frame dependency respectively, we introduce auxiliary motion-reference and reconstruction branches to produce text-guided motion and source features respectively. The obtained features are then injected into the main editing path via temporal and spatial self-attention layers. Extensive experiments demonstrate that UniEdit covers video motion editing and various appearance editing scenarios, and surpasses the state-of-the-art methods. Our code will be publicly available.