Abstract:Traditional dialogue state tracking approaches heavily rely on extensive training data and handcrafted features, limiting their scalability and adaptability to new domains. In this paper, we propose a novel method that leverages inference and in-context learning with ChatGPT for domain transfer in dialogue state tracking, without any parameter updates. By guiding ChatGPT's chain of thought, we enable it to retrieve relevant examples and generalize knowledge to accurately infer dialogue states, solely through inference. Experimental results on the MultiWOZ dataset demonstrate competitive performance and promising generalization across domains. Our parameter-free approach offers a scalable and adaptable solution, opening new research directions in domain transfer learning.
Abstract:Dialogue State Tracking (DST) is a key part of task-oriented dialogue systems, identifying important information in conversations. However, its accuracy drops significantly in spoken dialogue environments due to named entity errors from Automatic Speech Recognition (ASR) systems. We introduce a simple yet effective data augmentation method that targets those entities to improve the robustness of DST model. Our novel method can control the placement of errors using keyword-highlighted prompts while introducing phonetically similar errors. As a result, our method generated sufficient error patterns on keywords, leading to improved accuracy in noised and low-accuracy ASR environments.
Abstract:Existing datasets for 3D hand-object interaction are limited either in the data cardinality, data variations in interaction scenarios, or the quality of annotations. In this work, we present a comprehensive new training dataset for hand-object interaction called HOGraspNet. It is the only real dataset that captures full grasp taxonomies, providing grasp annotation and wide intraclass variations. Using grasp taxonomies as atomic actions, their space and time combinatorial can represent complex hand activities around objects. We select 22 rigid objects from the YCB dataset and 8 other compound objects using shape and size taxonomies, ensuring coverage of all hand grasp configurations. The dataset includes diverse hand shapes from 99 participants aged 10 to 74, continuous video frames, and a 1.5M RGB-Depth of sparse frames with annotations. It offers labels for 3D hand and object meshes, 3D keypoints, contact maps, and \emph{grasp labels}. Accurate hand and object 3D meshes are obtained by fitting the hand parametric model (MANO) and the hand implicit function (HALO) to multi-view RGBD frames, with the MoCap system only for objects. Note that HALO fitting does not require any parameter tuning, enabling scalability to the dataset's size with comparable accuracy to MANO. We evaluate HOGraspNet on relevant tasks: grasp classification and 3D hand pose estimation. The result shows performance variations based on grasp type and object class, indicating the potential importance of the interaction space captured by our dataset. The provided data aims at learning universal shape priors or foundation models for 3D hand-object interaction. Our dataset and code are available at https://hograspnet2024.github.io/.
Abstract:Temporal Action Detection (TAD) is fundamental yet challenging for real-world video applications. Leveraging the unique benefits of transformers, various DETR-based approaches have been adopted in TAD. However, it has recently been identified that the attention collapse in self-attention causes the performance degradation of DETR for TAD. Building upon previous research, this paper newly addresses the attention collapse problem in cross-attention within DETR-based TAD methods. Moreover, our findings reveal that cross-attention exhibits patterns distinct from predictions, indicating a short-cut phenomenon. To resolve this, we propose a new framework, Prediction-Feedback DETR (Pred-DETR), which utilizes predictions to restore the collapse and align the cross- and self-attention with predictions. Specifically, we devise novel prediction-feedback objectives using guidance from the relations of the predictions. As a result, Pred-DETR significantly alleviates the collapse and achieves state-of-the-art performance among DETR-based methods on various challenging benchmarks including THUMOS14, ActivityNet-v1.3, HACS, and FineAction.
Abstract:We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction. Sampling from our model yields plausible and diverse two-hand shapes in close interaction with or without an object. Our prior can be incorporated into any optimization or learning methods to reduce ambiguity in an ill-posed setup. Our key observation is that directly modeling the joint distribution of multiple instances imposes high learning complexity due to its combinatorial nature. Thus, we propose to decompose the modeling of joint distribution into the modeling of factored unconditional and conditional single instance distribution. In particular, we introduce a diffusion model that learns the single-hand distribution unconditional and conditional to another hand via conditioning dropout. For sampling, we combine anti-penetration and classifier-free guidance to enable plausible generation. Furthermore, we establish the rigorous evaluation protocol of two-hand synthesis, where our method significantly outperforms baseline generative models in terms of plausibility and diversity. We also demonstrate that our diffusion prior can boost the performance of two-hand reconstruction from monocular in-the-wild images, achieving new state-of-the-art accuracy.
Abstract:In this paper, we propose a neural articulation-to-speech (ATS) framework that synthesizes high-quality speech from articulatory signal in a multi-speaker situation. Most conventional ATS approaches only focus on modeling contextual information of speech from a single speaker's articulatory features. To explicitly represent each speaker's speaking style as well as the contextual information, our proposed model estimates style embeddings, guided from the essential speech style attributes such as pitch and energy. We adopt convolutional layers and transformer-based attention layers for our model to fully utilize both local and global information of articulatory signals, measured by electromagnetic articulography (EMA). Our model significantly improves the quality of synthesized speech compared to the baseline in terms of objective and subjective measurements in the Haskins dataset.
Abstract:Decoding spoken speech from neural activity in the brain is a fast-emerging research topic, as it could enable communication for people who have difficulties with producing audible speech. For this task, electrocorticography (ECoG) is a common method for recording brain activity with high temporal resolution and high spatial precision. However, due to the risky surgical procedure required for obtaining ECoG recordings, relatively little of this data has been collected, and the amount is insufficient to train a neural network-based Brain-to-Speech (BTS) system. To address this problem, we propose BrainTalker-a novel BTS framework that generates intelligible spoken speech from ECoG signals under extremely low-resource scenarios. We apply a transfer learning approach utilizing a pre-trained self supervised model, Wav2Vec 2.0. Specifically, we train an encoder module to map ECoG signals to latent embeddings that match Wav2Vec 2.0 representations of the corresponding spoken speech. These embeddings are then transformed into mel-spectrograms using stacked convolutional and transformer-based layers, which are fed into a neural vocoder to synthesize speech waveform. Experimental results demonstrate our proposed framework achieves outstanding performance in terms of subjective and objective metrics, including a Pearson correlation coefficient of 0.9 between generated and ground truth mel spectrograms. We share publicly available Demos and Code.
Abstract:Dialogue state tracking plays a crucial role in extracting information in task-oriented dialogue systems. However, preceding research are limited to textual modalities, primarily due to the shortage of authentic human audio datasets. We address this by investigating synthetic audio data for audio-based DST. To this end, we develop cascading and end-to-end models, train them with our synthetic audio dataset, and test them on actual human speech data. To facilitate evaluation tailored to audio modalities, we introduce a novel PhonemeF1 to capture pronunciation similarity. Experimental results showed that models trained solely on synthetic datasets can generalize their performance to human voice data. By eliminating the dependency on human speech data collection, these insights pave the way for significant practical advancements in audio-based DST. Data and code are available at https://github.com/JihyunLee1/E2E-DST.
Abstract:Recent 4D shape representations model continuous temporal evolution of implicit shapes by (1) learning query flows without leveraging shape and articulation priors or (2) decoding shape occupancies separately for each time value. Thus, they do not effectively capture implicit correspondences between articulated shapes or regularize jittery temporal deformations. In this work, we present FourierHandFlow, which is a spatio-temporally continuous representation for human hands that combines a 3D occupancy field with articulation-aware query flows represented as Fourier series. Given an input RGB sequence, we aim to learn a fixed number of Fourier coefficients for each query flow to guarantee smooth and continuous temporal shape dynamics. To effectively model spatio-temporal deformations of articulated hands, we compose our 4D representation based on two types of Fourier query flow: (1) pose flow that models query dynamics influenced by hand articulation changes via implicit linear blend skinning and (2) shape flow that models query-wise displacement flow. In the experiments, our method achieves state-of-the-art results on video-based 4D reconstruction while being computationally more efficient than the existing 3D/4D implicit shape representations. We additionally show our results on motion inter- and extrapolation and texture transfer using the learned correspondences of implicit shapes. To the best of our knowledge, FourierHandFlow is the first neural 4D continuous hand representation learned from RGB videos. The code will be publicly accessible.
Abstract:We present our work on Track 2 in the Dialog System Technology Challenges 11 (DSTC11). DSTC11-Track2 aims to provide a benchmark for zero-shot, cross-domain, intent-set induction. In the absence of in-domain training dataset, robust utterance representation that can be used across domains is necessary to induce users' intentions. To achieve this, we leveraged a multi-domain dialogue dataset to fine-tune the language model and proposed extracting Verb-Object pairs to remove the artifacts of unnecessary information. Furthermore, we devised the method that generates each cluster's name for the explainability of clustered results. Our approach achieved 3rd place in the precision score and showed superior accuracy and normalized mutual information (NMI) score than the baseline model on various domain datasets.