Abstract:Multi-scene absolute pose regression addresses the demand for fast and memory-efficient camera pose estimation across various real-world environments. Nowadays, transformer-based model has been devised to regress the camera pose directly in multi-scenes. Despite its potential, transformer encoders are underutilized due to the collapsed self-attention map, having low representation capacity. This work highlights the problem and investigates it from a new perspective: distortion of query-key embedding space. Based on the statistical analysis, we reveal that queries and keys are mapped in completely different spaces while only a few keys are blended into the query region. This leads to the collapse of the self-attention map as all queries are considered similar to those few keys. Therefore, we propose simple but effective solutions to activate self-attention. Concretely, we present an auxiliary loss that aligns queries and keys, preventing the distortion of query-key space and encouraging the model to find global relations by self-attention. In addition, the fixed sinusoidal positional encoding is adopted instead of undertrained learnable one to reflect appropriate positional clues into the inputs of self-attention. As a result, our approach resolves the aforementioned problem effectively, thus outperforming existing methods in both outdoor and indoor scenes.
Abstract:Temporal Action Detection (TAD) is fundamental yet challenging for real-world video applications. Leveraging the unique benefits of transformers, various DETR-based approaches have been adopted in TAD. However, it has recently been identified that the attention collapse in self-attention causes the performance degradation of DETR for TAD. Building upon previous research, this paper newly addresses the attention collapse problem in cross-attention within DETR-based TAD methods. Moreover, our findings reveal that cross-attention exhibits patterns distinct from predictions, indicating a short-cut phenomenon. To resolve this, we propose a new framework, Prediction-Feedback DETR (Pred-DETR), which utilizes predictions to restore the collapse and align the cross- and self-attention with predictions. Specifically, we devise novel prediction-feedback objectives using guidance from the relations of the predictions. As a result, Pred-DETR significantly alleviates the collapse and achieves state-of-the-art performance among DETR-based methods on various challenging benchmarks including THUMOS14, ActivityNet-v1.3, HACS, and FineAction.
Abstract:Temporal action detection (TAD) is challenging, yet fundamental for real-world video applications. Recently, DETR-based models for TAD have been prevailing thanks to their unique benefits. However, transformers demand a huge dataset, and unfortunately data scarcity in TAD causes a severe degeneration. In this paper, we identify two crucial problems from data scarcity: attention collapse and imbalanced performance. To this end, we propose a new pre-training strategy, Long-Term Pre-training (LTP), tailored for transformers. LTP has two main components: 1) class-wise synthesis, 2) long-term pretext tasks. Firstly, we synthesize long-form video features by merging video snippets of a target class and non-target classes. They are analogous to untrimmed data used in TAD, despite being created from trimmed data. In addition, we devise two types of long-term pretext tasks to learn long-term dependency. They impose long-term conditions such as finding second-to-fourth or short-duration actions. Our extensive experiments show state-of-the-art performances in DETR-based methods on ActivityNet-v1.3 and THUMOS14 by a large margin. Moreover, we demonstrate that LTP significantly relieves the data scarcity issues in TAD.
Abstract:Temporal Action Detection (TAD) is challenging but fundamental for real-world video applications. Recently, DETR-based models have been devised for TAD but have not performed well yet. In this paper, we point out the problem in the self-attention of DETR for TAD; the attention modules focus on a few key elements, called temporal collapse problem. It degrades the capability of the encoder and decoder since their self-attention modules play no role. To solve the problem, we propose a novel framework, Self-DETR, which utilizes cross-attention maps of the decoder to reactivate self-attention modules. We recover the relationship between encoder features by simple matrix multiplication of the cross-attention map and its transpose. Likewise, we also get the information within decoder queries. By guiding collapsed self-attention maps with the guidance map calculated, we settle down the temporal collapse of self-attention modules in the encoder and decoder. Our extensive experiments demonstrate that Self-DETR resolves the temporal collapse problem by keeping high diversity of attention over all layers.