Abstract:We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
Abstract:In recent years, there has been a significant focus on research related to text-guided image inpainting. However, the task remains challenging due to several constraints, such as ensuring alignment between the image and the text, and maintaining consistency in distribution between corrupted and uncorrupted regions. In this paper, thus, we propose a dual affine transformation generative adversarial network (DAFT-GAN) to maintain the semantic consistency for text-guided inpainting. DAFT-GAN integrates two affine transformation networks to combine text and image features gradually for each decoding block. Moreover, we minimize information leakage of uncorrupted features for fine-grained image generation by encoding corrupted and uncorrupted regions of the masked image separately. Our proposed model outperforms the existing GAN-based models in both qualitative and quantitative assessments with three benchmark datasets (MS-COCO, CUB, and Oxford) for text-guided image inpainting.