Abstract:Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.
Abstract:Transformers excel in Natural Language Processing (NLP) due to their prowess in capturing long-term dependencies but suffer from exponential resource consumption with increasing sequence lengths. To address these challenges, we propose MCSD model, an efficient language model with linear scaling and fast inference speed. MCSD model leverages diverse feature fusion, primarily through the multi-channel slope and decay (MCSD) block, to robustly represent features. This block comprises slope and decay sections that extract features across diverse temporal receptive fields, facilitating capture of both local and global information. In addition, MCSD block conducts element-wise fusion of diverse features to further enhance the delicate feature extraction capability. For inference, we formulate the inference process into a recurrent representation, slashing space complexity to $O(1)$ and time complexity to $O(N)$ respectively. Our experiments show that MCSD attains higher throughput and lower GPU memory consumption compared to Transformers, while maintaining comparable performance to larger-scale language learning models on benchmark tests. These attributes position MCSD as a promising base for edge deployment and embodied intelligence.
Abstract:Human-Object Interaction (HOI) detection aims to localize human-object pairs and comprehend their interactions. Recently, two-stage transformer-based methods have demonstrated competitive performance. However, these methods frequently focus on object appearance features and ignore global contextual information. Besides, vision-language model CLIP which effectively aligns visual and text embeddings has shown great potential in zero-shot HOI detection. Based on the former facts, We introduce a novel HOI detector named ISA-HOI, which extensively leverages knowledge from CLIP, aligning interactive semantics between visual and textual features. We first extract global context of image and local features of object to Improve interaction Features in images (IF). On the other hand, we propose a Verb Semantic Improvement (VSI) module to enhance textual features of verb labels via cross-modal fusion. Ultimately, our method achieves competitive results on the HICO-DET and V-COCO benchmarks with much fewer training epochs, and outperforms the state-of-the-art under zero-shot settings.
Abstract:The GelSight-like visual tactile (VT) sensor has gained popularity as a high-resolution tactile sensing technology for robots, capable of measuring touch geometry using a single RGB camera. However, the development of multi-modal perception for VT sensors remains a challenge, limited by the mono camera. In this paper, we propose the GelSplitter, a new framework approach the multi-modal VT sensor with synchronized multi-modal cameras and resemble a more human-like tactile receptor. Furthermore, we focus on 3D tactile reconstruction and implement a compact sensor structure that maintains a comparable size to state-of-the-art VT sensors, even with the addition of a prism and a near infrared (NIR) camera. We also design a photometric fusion stereo neural network (PFSNN), which estimates surface normals of objects and reconstructs touch geometry from both infrared and visible images. Our results demonstrate that the accuracy of RGB and NIR fusion is higher than that of RGB images alone. Additionally, our GelSplitter framework allows for a flexible configuration of different camera sensor combinations, such as RGB and thermal imaging.
Abstract:High-resolution multi-modality information acquired by vision-based tactile sensors can support more dexterous manipulations for robot fingers. Optical flow is low-level information directly obtained by vision-based tactile sensors, which can be transformed into other modalities like force, geometry and depth. Current vision-tactile sensors employ optical flow methods from OpenCV to estimate the deformation of markers in gels. However, these methods need to be more precise for accurately measuring the displacement of markers during large elastic deformation of the gel, as this can significantly impact the accuracy of downstream tasks. This study proposes a self-supervised optical flow method based on deep learning to achieve high accuracy in displacement measurement for vision-based tactile sensors. The proposed method employs a coarse-to-fine strategy to handle large deformations by constructing a multi-scale feature pyramid from the input image. To better deal with the elastic deformation caused by the gel, the Helmholtz velocity decomposition constraint combined with the elastic deformation constraint are adopted to address the distortion rate and area change rate, respectively. A local flow fusion module is designed to smooth the optical flow, taking into account the prior knowledge of the blurred effect of gel deformation. We trained the proposed self-supervised network using an open-source dataset and compared it with traditional and deep learning-based optical flow methods. The results show that the proposed method achieved the highest displacement measurement accuracy, thereby demonstrating its potential for enabling more precise measurement of downstream tasks using vision-based tactile sensors.
Abstract:High-quality pseudo labels are essential for semi-supervised semantic segmentation. Consistency regularization and pseudo labeling-based semi-supervised methods perform co-training using the pseudo labels from multi-view inputs. However, such co-training models tend to converge early to a consensus during training, so that the models degenerate to the self-training ones. Besides, the multi-view inputs are generated by perturbing or augmenting the original images, which inevitably introduces noise into the input leading to low-confidence pseudo labels. To address these issues, we propose an \textbf{U}ncertainty-guided Collaborative Mean-Teacher (UCMT) for semi-supervised semantic segmentation with the high-confidence pseudo labels. Concretely, UCMT consists of two main components: 1) collaborative mean-teacher (CMT) for encouraging model disagreement and performing co-training between the sub-networks, and 2) uncertainty-guided region mix (UMIX) for manipulating the input images according to the uncertainty maps of CMT and facilitating CMT to produce high-confidence pseudo labels. Combining the strengths of UMIX with CMT, UCMT can retain model disagreement and enhance the quality of pseudo labels for the co-training segmentation. Extensive experiments on four public medical image datasets including 2D and 3D modalities demonstrate the superiority of UCMT over the state-of-the-art. Code is available at: https://github.com/Senyh/UCMT.
Abstract:The booming of electric vehicles demands efficient battery disassembly for recycling to be environment-friendly. Currently, battery disassembly is still primarily done by humans, probably assisted by robots, due to the unstructured environment and high uncertainties. It is highly desirable to design autonomous solutions to improve work efficiency and lower human risks in high voltage and toxic environments. This paper proposes a novel neurosymbolic method, which augments the traditional Variational Autoencoder (VAE) model to learn symbolic operators based on raw sensory inputs and their relationships. The symbolic operators include a probabilistic state symbol grounding model and a state transition matrix for predicting states after each execution to enable autonomous task and motion planning. At last, the method's feasibility is verified through test results.
Abstract:The booming of electric vehicles demands efficient battery disassembly for recycling to be environment-friendly. Due to the unstructured environment and high uncertainties, battery disassembly is still primarily done by humans, probably assisted by robots. It is highly desirable to design autonomous solutions to improve work efficiency and lower human risks in high voltage and toxic environments. This paper proposes a novel framework of the NeuroSymbolic task and motion planning method to disassemble batteries in an unstructured environment using robots automatically. It enables robots to independently locate and disassemble battery bolts, with or without obstacles. This study not only provides a solution for intelligently disassembling electric vehicle batteries but also verifies its feasibility through a set of test results with the robot accomplishing the disassembly tasks in a complex and dynamic environment.
Abstract:Image-guided depth completion aims to generate dense depth maps with sparse depth measurements and corresponding RGB images. Currently, spatial propagation networks (SPNs) are the most popular affinity-based methods in depth completion, but they still suffer from the representation limitation of the fixed affinity and the over smoothing during iterations. Our solution is to estimate independent affinity matrices in each SPN iteration, but it is over-parameterized and heavy calculation. This paper introduces an efficient model that learns the affinity among neighboring pixels with an attention-based, dynamic approach. Specifically, the Dynamic Spatial Propagation Network (DySPN) we proposed makes use of a non-linear propagation model (NLPM). It decouples the neighborhood into parts regarding to different distances and recursively generates independent attention maps to refine these parts into adaptive affinity matrices. Furthermore, we adopt a diffusion suppression (DS) operation so that the model converges at an early stage to prevent over-smoothing of dense depth. Finally, in order to decrease the computational cost required, we also introduce three variations that reduce the amount of neighbors and attentions needed while still retaining similar accuracy. In practice, our method requires less iteration to match the performance of other SPNs and yields better results overall. DySPN outperforms other state-of-the-art (SoTA) methods on KITTI Depth Completion (DC) evaluation by the time of submission and is able to yield SoTA performance in NYU Depth v2 dataset as well.
Abstract:Person search unifies person detection and person re-identification (Re-ID) to locate query persons from the panoramic gallery images. One major challenge comes from the imbalanced long-tail person identity distributions, which prevents the one-step person search model from learning discriminative person features for the final re-identification. However, it is under-explored how to solve the heavy imbalanced identity distributions for the one-step person search. Techniques designed for the long-tail classification task, for example, image-level re-sampling strategies, are hard to be effectively applied to the one-step person search which jointly solves person detection and Re-ID subtasks with a detection-based multi-task framework. To tackle this problem, we propose a Subtask-dominated Transfer Learning (STL) method. The STL method solves the long-tail problem in the pretraining stage of the dominated Re-ID subtask and improves the one-step person search by transfer learning of the pretrained model. We further design a Multi-level RoI Fusion Pooling layer to enhance the discrimination ability of person features for the one-step person search. Extensive experiments on CUHK-SYSU and PRW datasets demonstrate the superiority and effectiveness of the proposed method.