Abstract:Previous studies showed that image datasets lacking geographic diversity can lead to biased performance in models trained on them. While earlier work studied general-purpose image datasets (e.g., ImageNet) and simple tasks like image recognition, we investigated geo-biases in real-world driving datasets on a more complex task: instance segmentation. We examined if instance segmentation models trained on European driving scenes (Eurocentric models) are geo-biased. Consistent with previous work, we found that Eurocentric models were geo-biased. Interestingly, we found that geo-biases came from classification errors rather than localization errors, with classification errors alone contributing 10-90% of the geo-biases in segmentation and 19-88% of the geo-biases in detection. This showed that while classification is geo-biased, localization (including detection and segmentation) is geographically robust. Our findings show that in region-specific models (e.g., Eurocentric models), geo-biases from classification errors can be significantly mitigated by using coarser classes (e.g., grouping car, bus, and truck as 4-wheeler).
Abstract:Most of the ML datasets we use today are biased. When we train models on these biased datasets, they often not only learn dataset biases but can also amplify them -- a phenomenon known as bias amplification. Several co-occurrence-based metrics have been proposed to measure bias amplification between a protected attribute A (e.g., gender) and a task T (e.g., cooking). However, these metrics fail to measure biases when A is balanced with T. To measure bias amplification in balanced datasets, recent work proposed a predictability-based metric called leakage amplification. However, leakage amplification cannot identify the direction in which biases are amplified. In this work, we propose a new predictability-based metric called directional predictability amplification (DPA). DPA measures directional bias amplification, even for balanced datasets. Unlike leakage amplification, DPA is easier to interpret and less sensitive to attacker models (a hyperparameter in predictability-based metrics). Our experiments on tabular and image datasets show that DPA is an effective metric for measuring directional bias amplification. The code will be available soon.
Abstract:Crop field boundaries are foundational datasets for agricultural monitoring and assessments but are expensive to collect manually. Machine learning (ML) methods for automatically extracting field boundaries from remotely sensed images could help realize the demand for these datasets at a global scale. However, current ML methods for field instance segmentation lack sufficient geographic coverage, accuracy, and generalization capabilities. Further, research on improving ML methods is restricted by the lack of labeled datasets representing the diversity of global agricultural fields. We present Fields of The World (FTW) -- a novel ML benchmark dataset for agricultural field instance segmentation spanning 24 countries on four continents (Europe, Africa, Asia, and South America). FTW is an order of magnitude larger than previous datasets with 70,462 samples, each containing instance and semantic segmentation masks paired with multi-date, multi-spectral Sentinel-2 satellite images. We provide results from baseline models for the new FTW benchmark, show that models trained on FTW have better zero-shot and fine-tuning performance in held-out countries than models that aren't pre-trained with diverse datasets, and show positive qualitative zero-shot results of FTW models in a real-world scenario -- running on Sentinel-2 scenes over Ethiopia.
Abstract:In a changing climate, sustainable agriculture is essential for food security and environmental health. However, it is challenging to understand the complex interactions among its biophysical, social, and economic components. Predictive machine learning (ML), with its capacity to learn from data, is leveraged in sustainable agriculture for applications like yield prediction and weather forecasting. Nevertheless, it cannot explain causal mechanisms and remains descriptive rather than prescriptive. To address this gap, we propose causal ML, which merges ML's data processing with causality's ability to reason about change. This facilitates quantifying intervention impacts for evidence-based decision-making and enhances predictive model robustness. We showcase causal ML through eight diverse applications that benefit stakeholders across the agri-food chain, including farmers, policymakers, and researchers.
Abstract:Recent work demonstrated Transformers' ability to efficiently copy strings of exponential sizes, distinguishing them from other architectures. We present the Causal Relation Network (CausalRN), an all-MLP sequence modeling architecture that can match Transformers on the copying task. Extending Relation Networks (RNs), we implemented key innovations to support autoregressive sequence modeling while maintaining computational feasibility. We discovered that exponentially-activated RNs are reducible to linear time complexity, and pre-activation normalization induces an infinitely growing memory pool, similar to a KV cache. In ablation study, we found both exponential activation and pre-activation normalization are indispensable for Transformer-level copying. Our findings provide new insights into what actually constitutes strong in-context retrieval.
Abstract:The goal of field boundary delineation is to predict the polygonal boundaries and interiors of individual crop fields in overhead remotely sensed images (e.g., from satellites or drones). Automatic delineation of field boundaries is a necessary task for many real-world use cases in agriculture, such as estimating cultivated area in a region or predicting end-of-season yield in a field. Field boundary delineation can be framed as an instance segmentation problem, but presents unique research challenges compared to traditional computer vision datasets used for instance segmentation. The practical applicability of previous work is also limited by the assumption that a sufficiently-large labeled dataset is available where field boundary delineation models will be applied, which is not the reality for most regions (especially under-resourced regions such as Sub-Saharan Africa). We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data that uses multi-region transfer learning to adapt model weights for the target region. We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures. Our implementation and datasets are publicly available to enable use of the approach by end-users and serve as a benchmark for future work.
Abstract:As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly important. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.
Abstract:Satellite data has the potential to inspire a seismic shift for machine learning -- one in which we rethink existing practices designed for traditional data modalities. As machine learning for satellite data (SatML) gains traction for its real-world impact, our field is at a crossroads. We can either continue applying ill-suited approaches, or we can initiate a new research agenda that centers around the unique characteristics and challenges of satellite data. This position paper argues that satellite data constitutes a distinct modality for machine learning research and that we must recognize it as such to advance the quality and impact of SatML research across theory, methods, and deployment. We outline critical discussion questions and actionable suggestions to transform SatML from merely an intriguing application area to a dedicated research discipline that helps move the needle on big challenges for machine learning and society.
Abstract:Boulders form from a variety of geological processes, which their size, shape, and orientation may help us better understand. Furthermore, they represent potential hazards to spacecraft landing that need to be characterized. However, mapping individual boulders across vast areas is extremely labor-intensive, often limiting the extent over which they are characterized and the statistical robustness of obtained boulder morphometrics. To automate boulder characterization, we use an instance segmentation neural network, Mask R-CNN, to detect and outline boulders in high-resolution satellite images. Our neural network, BoulderNet, was trained from a dataset of > 33,000 boulders in > 750 image tiles from Earth, the Moon, and Mars. BoulderNet not only correctly detects the majority of boulders in images, but it identifies the outline of boulders with high fidelity, achieving average precision and recall values of 72% and 64% relative to manually digitized boulders from the test dataset, when only detections with intersection-over-union ratios > 50% are considered valid. These values are similar to those obtained by human mappers. On Earth, equivalent boulder diameters, aspect ratios, and orientations extracted from predictions were benchmarked against ground measurements and yield values within 15%, 0.20, and 20 degrees of their ground-truth values, respectively. BoulderNet achieves better boulder detection and characterization performance relative to existing methods, providing a versatile open-source tool to characterize entire boulder fields on planetary surfaces.
Abstract:Over the years, space scientists have collected terabytes of Mars data from satellites and rovers. One important set of features identified in Mars orbital images is pitted cones, which are interpreted to be mud volcanoes believed to form in regions that were once saturated in water (i.e., a lake or ocean). Identifying pitted cones globally on Mars would be of great importance, but expert geologists are unable to sort through the massive orbital image archives to identify all examples. However, this task is well suited for computer vision. Although several computer vision datasets exist for various Mars-related tasks, there is currently no open-source dataset available for cone detection/segmentation. Furthermore, previous studies trained models using data from a single region, which limits their applicability for global detection and mapping. Motivated by this, we introduce ConeQuest, the first expert-annotated public dataset to identify cones on Mars. ConeQuest consists of >13k samples from 3 different regions of Mars. We propose two benchmark tasks using ConeQuest: (i) Spatial Generalization and (ii) Cone-size Generalization. We finetune and evaluate widely-used segmentation models on both benchmark tasks. Results indicate that cone segmentation is a challenging open problem not solved by existing segmentation models, which achieve an average IoU of 52.52% and 42.55% on in-distribution data for tasks (i) and (ii), respectively. We believe this new benchmark dataset will facilitate the development of more accurate and robust models for cone segmentation. Data and code are available at https://github.com/kerner-lab/ConeQuest.