Abstract:Crop field boundaries are foundational datasets for agricultural monitoring and assessments but are expensive to collect manually. Machine learning (ML) methods for automatically extracting field boundaries from remotely sensed images could help realize the demand for these datasets at a global scale. However, current ML methods for field instance segmentation lack sufficient geographic coverage, accuracy, and generalization capabilities. Further, research on improving ML methods is restricted by the lack of labeled datasets representing the diversity of global agricultural fields. We present Fields of The World (FTW) -- a novel ML benchmark dataset for agricultural field instance segmentation spanning 24 countries on four continents (Europe, Africa, Asia, and South America). FTW is an order of magnitude larger than previous datasets with 70,462 samples, each containing instance and semantic segmentation masks paired with multi-date, multi-spectral Sentinel-2 satellite images. We provide results from baseline models for the new FTW benchmark, show that models trained on FTW have better zero-shot and fine-tuning performance in held-out countries than models that aren't pre-trained with diverse datasets, and show positive qualitative zero-shot results of FTW models in a real-world scenario -- running on Sentinel-2 scenes over Ethiopia.
Abstract:Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do not incorporate outcome information; prominent examples include prospective cohort studies, survey weighting, and the weighting portion of augmented weighting estimators. In such applications, we explore the central role of representation learning in finding desirable weights in practice. Unlike the common approach of assuming a well-specified representation, we highlight the error due to the choice of a representation and outline a general framework for finding suitable representations that minimize this error. Building on recent work that combines balancing weights and neural networks, we propose an end-to-end estimation procedure that learns a flexible representation, while retaining promising theoretical properties. We show that this approach is competitive in a range of common causal inference tasks.
Abstract:Merging datasets across institutions is a lengthy and costly procedure, especially when it involves private information. Data hosts may therefore want to prospectively gauge which datasets are most beneficial to merge with, without revealing sensitive information. For causal estimation this is particularly challenging as the value of a merge will depend not only on the reduction in epistemic uncertainty but also the improvement in overlap. To address this challenge, we introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge in the context of heterogeneous treatment effect estimation. We do this by evaluating the Expected Information Gain (EIG) and utilising multi-party computation to ensure it can be securely computed without revealing any raw data. As we demonstrate, this can be used with differential privacy (DP) to ensure privacy requirements whilst preserving more accurate computation than naive DP alone. To the best of our knowledge, this work presents the first privacy-preserving method for dataset acquisition tailored to causal estimation. We demonstrate the effectiveness and reliability of our method on a range of simulated and realistic benchmarks. The code is available anonymously.
Abstract:Applications of large language models often involve the generation of free-form responses, in which case uncertainty quantification becomes challenging. This is due to the need to identify task-specific uncertainties (e.g., about the semantics) which appears difficult to define in general cases. This work addresses these challenges from a perspective of Bayesian decision theory, starting from the assumption that our utility is characterized by a similarity measure that compares a generated response with a hypothetical true response. We discuss how this assumption enables principled quantification of the model's subjective uncertainty and its calibration. We further derive a measure for epistemic uncertainty, based on a missing data perspective and its characterization as an excess risk. The proposed measures can be applied to black-box language models. We demonstrate the proposed methods on question answering and machine translation tasks, where they extract broadly meaningful uncertainty estimates from GPT and Gemini models and quantify their calibration.
Abstract:In-context learning (ICL) has emerged as a particularly remarkable characteristic of Large Language Models (LLM): given a pretrained LLM and an observed dataset, LLMs can make predictions for new data points from the same distribution without fine-tuning. Numerous works have postulated ICL as approximately Bayesian inference, rendering this a natural hypothesis. In this work, we analyse this hypothesis from a new angle through the martingale property, a fundamental requirement of a Bayesian learning system for exchangeable data. We show that the martingale property is a necessary condition for unambiguous predictions in such scenarios, and enables a principled, decomposed notion of uncertainty vital in trustworthy, safety-critical systems. We derive actionable checks with corresponding theory and test statistics which must hold if the martingale property is satisfied. We also examine if uncertainty in LLMs decreases as expected in Bayesian learning when more data is observed. In three experiments, we provide evidence for violations of the martingale property, and deviations from a Bayesian scaling behaviour of uncertainty, falsifying the hypothesis that ICL is Bayesian.
Abstract:Bayesian modelling allows for the quantification of predictive uncertainty which is crucial in safety-critical applications. Yet for many machine learning (ML) algorithms, it is difficult to construct or implement their Bayesian counterpart. In this work we present a promising approach to address this challenge, based on the hypothesis that commonly used ML algorithms are efficient across a wide variety of tasks and may thus be near Bayes-optimal w.r.t. an unknown task distribution. We prove that it is possible to recover the Bayesian posterior defined by the task distribution, which is unknown but optimal in this setting, by building a martingale posterior using the algorithm. We further propose a practical uncertainty quantification method that apply to general ML algorithms. Experiments based on a variety of non-NN and NN algorithms demonstrate the efficacy of our method.
Abstract:Likelihood-based deep generative models such as score-based diffusion models and variational autoencoders are state-of-the-art machine learning models approximating high-dimensional distributions of data such as images, text, or audio. One of many downstream tasks they can be naturally applied to is out-of-distribution (OOD) detection. However, seminal work by Nalisnick et al. which we reproduce showed that deep generative models consistently infer higher log-likelihoods for OOD data than data they were trained on, marking an open problem. In this work, we analyse using the gradient of a data point with respect to the parameters of the deep generative model for OOD detection, based on the simple intuition that OOD data should have larger gradient norms than training data. We formalise measuring the size of the gradient as approximating the Fisher information metric. We show that the Fisher information matrix (FIM) has large absolute diagonal values, motivating the use of chi-square distributed, layer-wise gradient norms as features. We combine these features to make a simple, model-agnostic and hyperparameter-free method for OOD detection which estimates the joint density of the layer-wise gradient norms for a given data point. We find that these layer-wise gradient norms are weakly correlated, rendering their combined usage informative, and prove that the layer-wise gradient norms satisfy the principle of (data representation) invariance. Our empirical results indicate that this method outperforms the Typicality test for most deep generative models and image dataset pairings.
Abstract:Interpretability and transparency are essential for incorporating causal effect models from observational data into policy decision-making. They can provide trust for the model in the absence of ground truth labels to evaluate the accuracy of such models. To date, attempts at transparent causal effect estimation consist of applying post hoc explanation methods to black-box models, which are not interpretable. Here, we present BICauseTree: an interpretable balancing method that identifies clusters where natural experiments occur locally. Our approach builds on decision trees with a customized objective function to improve balancing and reduce treatment allocation bias. Consequently, it can additionally detect subgroups presenting positivity violations, exclude them, and provide a covariate-based definition of the target population we can infer from and generalize to. We evaluate the method's performance using synthetic and realistic datasets, explore its bias-interpretability tradeoff, and show that it is comparable with existing approaches.
Abstract:With the adoption of machine learning into routine clinical practice comes the need for Explainable AI methods tailored to medical applications. Shapley values have sparked wide interest for locally explaining models. Here, we demonstrate their interpretation strongly depends on both the summary statistic and the estimator for it, which in turn define what we identify as an 'anchor point'. We show that the convention of using a mean anchor point may generate misleading interpretations for survival analysis and introduce median-SHAP, a method for explaining black-box models predicting individual survival times.
Abstract:Treatment effect heterogeneity (TEH), or variability in treatment effect for different subgroups within a population, is of significant interest in clinical trial analysis. Causal forests (Wager and Athey, 2018) is a highly popular method for this problem, but like many other methods for detecting TEH, its criterion for separating subgroups focuses on differences in absolute risk. This can dilute statistical power by masking nuance in the relative risk, which is often a more appropriate quantity of clinical interest. In this work, we propose and implement a methodology for modifying causal forests to target relative risk using a novel node-splitting procedure based on generalized linear model (GLM) comparison. We present results on simulated and real-world data that suggest relative risk causal forests can capture otherwise unobserved sources of heterogeneity.