Abstract:When the world changes, so does the text that humans write about it. How do we build language models that can be easily updated to reflect these changes? One popular approach is retrieval-augmented generation, in which new documents are inserted into a knowledge base and retrieved during prediction for downstream tasks. Most prior work on these systems have focused on improving behavior during prediction through better retrieval or reasoning. This paper introduces ERASE, which instead improves model behavior when new documents are acquired, by incrementally deleting or rewriting other entries in the knowledge base each time a document is added. In two new benchmark datasets evaluating models' ability to answer questions about a stream of news articles or conversations, ERASE improves accuracy relative to conventional retrieval-augmented generation by 7-13% (Mixtral-8x7B) and 6-10% (Llama-3-8B) absolute. Code and data are available at https://github.com/belindal/ERASE
Abstract:Modern language models (LMs) can learn to perform new tasks in different ways: in instruction following, the target task is described explicitly in natural language; in few-shot prompting, the task is specified implicitly with a small number of examples; in instruction inference, LMs are presented with in-context examples and are then prompted to generate a natural language task description before making predictions. Each of these procedures may be thought of as invoking a different form of reasoning: instruction following involves deductive reasoning, few-shot prompting involves inductive reasoning, and instruction inference involves abductive reasoning. How do these different capabilities relate? Across four LMs (from the gpt and llama families) and two learning problems (involving arithmetic functions and machine translation) we find a strong dissociation between the different types of reasoning: LMs can sometimes learn effectively from few-shot prompts even when they are unable to explain their own prediction rules; conversely, they sometimes infer useful task descriptions while completely failing to learn from human-generated descriptions of the same task. Our results highlight the non-systematic nature of reasoning even in some of today's largest LMs, and underscore the fact that very different learning mechanisms may be invoked by seemingly similar prompting procedures.
Abstract:Prior work shows that program-aided reasoning, in which large language models (LLMs) are combined with programs written in programming languages such as Python, can significantly improve accuracy on various reasoning tasks. However, while accuracy is essential, it is also important for such reasoners to "know what they know", which can be quantified through the calibration of the model. In this paper, we compare the calibration of Program Aided Language Models (PAL) and text-based Chain-of-thought (COT) prompting techniques over 5 datasets and 2 model types: LLaMA models and OpenAI models. Our results indicate that PAL leads to improved calibration in 75% of the instances. Our analysis uncovers that prompting styles that produce lesser diversity in generations also have more calibrated results, and thus we also experiment with inducing lower generation diversity using temperature scaling and find that for certain temperatures, PAL is not only more accurate but is also more calibrated than COT. Overall, we demonstrate that, in the majority of cases, program-aided reasoners better know what they know than text-based counterparts.
Abstract:Do machines and humans process language in similar ways? A recent line of research has hinted in the affirmative, demonstrating that human brain signals can be effectively predicted using the internal representations of language models (LMs). This is thought to reflect shared computational principles between LMs and human language processing. However, there are also clear differences in how LMs and humans acquire and use language, even if the final task they are performing is the same. Despite this, there is little work exploring systematic differences between human and machine language processing using brain data. To address this question, we examine the differences between LM representations and the human brain's responses to language, specifically by examining a dataset of Magnetoencephalography (MEG) responses to a written narrative. In doing so we identify three phenomena that, in prior work, LMs have been found to not capture well: emotional understanding, figurative language processing, and physical commonsense. By fine-tuning LMs on datasets related to these phenomena, we observe that fine-tuned LMs show improved alignment with human brain responses across these tasks. Our study implies that the observed divergences between LMs and human brains may stem from LMs' inadequate representation of these specific types of knowledge.
Abstract:Idioms are common in everyday language, but often pose a challenge to translators because their meanings do not follow from the meanings of their parts. Despite significant advances, machine translation systems still struggle to translate idiomatic expressions. We provide a simple characterization of idiomatic translation and related issues. This allows us to conduct a synthetic experiment revealing a tipping point at which transformer-based machine translation models correctly default to idiomatic translations. To expand multilingual resources, we compile a dataset of ~4k natural sentences containing idiomatic expressions in French, Finnish, and Japanese. To improve translation of natural idioms, we introduce two straightforward yet effective techniques: the strategic upweighting of training loss on potentially idiomatic sentences, and using retrieval-augmented models. This not only improves the accuracy of a strong pretrained MT model on idiomatic sentences by up to 13% in absolute accuracy, but also holds potential benefits for non-idiomatic sentences.
Abstract:Recent advances in large language models have prompted researchers to examine their abilities across a variety of linguistic tasks, but little has been done to investigate how models handle the interactions in meaning across words and larger syntactic forms -- i.e. phenomena at the intersection of syntax and semantics. We present the semantic notion of agentivity as a case study for probing such interactions. We created a novel evaluation dataset by utilitizing the unique linguistic properties of a subset of optionally transitive English verbs. This dataset was used to prompt varying sizes of three model classes to see if they are sensitive to agentivity at the lexical level, and if they can appropriately employ these word-level priors given a specific syntactic context. Overall, GPT-3 text-davinci-003 performs extremely well across all experiments, outperforming all other models tested by far. In fact, the results are even better correlated with human judgements than both syntactic and semantic corpus statistics. This suggests that LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery than select corpora for certain tasks.
Abstract:Figurative language permeates human communication, but at the same time is relatively understudied in NLP. Datasets have been created in English to accelerate progress towards measuring and improving figurative language processing in language models (LMs). However, the use of figurative language is an expression of our cultural and societal experiences, making it difficult for these phrases to be universally applicable. In this work, we create a figurative language inference dataset, \datasetname, for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba. Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region. We assess multilingual LMs' abilities to interpret figurative language in zero-shot and few-shot settings. All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data, emphasizing the need for LMs to be exposed to a broader range of linguistic and cultural variation during training.
Abstract:Many recent advances in natural language generation have been fueled by training large language models on internet-scale data. However, this paradigm can lead to models that generate toxic, inaccurate, and unhelpful content, and automatic evaluation metrics often fail to identify these behaviors. As models become more capable, human feedback is an invaluable signal for evaluating and improving models. This survey aims to provide an overview of the recent research that has leveraged human feedback to improve natural language generation. First, we introduce an encompassing formalization of feedback, and identify and organize existing research into a taxonomy following this formalization. Next, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using the feedback or training feedback models. We also discuss existing datasets for human-feedback data collection, and concerns surrounding feedback collection. Finally, we provide an overview of the nascent field of AI feedback, which exploits large language models to make judgments based on a set of principles and minimize the need for human intervention.
Abstract:Unlike current state-of-the-art language models, young children actively acquire language through interactions with their surrounding environment and caretakers. One mechanism that has been argued to be critical to language learning is the ability to infer the mental states of other agents in social environments, coined Theory of Mind (ToM) by Premack & Woodruff (1978). Drawing inspiration from the modern operationalized versions of ToM implemented in Rabinowitz et al. (2018) and Zhu et al. (2021), we build language-learning agents equipped with ToM, and measure its effects on the learning process. We model ToM by giving the speaker agent an internal listener model that is trained alongside the speaker and used to rerank potential utterances. We experiment with varying task difficulty, hypothesizing that models will acquire more complex language to adapt to stronger environmental pressures. We find that training speakers with a highly weighted ToM listener component leads to performance gains in our image referential game setting. We also find some evidence that increasing task difficulty in the training process results in more fluent and precise utterances in evaluation. This suggests the potential utility of further incorporating ToM, as well as other insights from child language acquisition, into computational models of language acquisition.
Abstract:We introduce EUREKA, an ensemble-based approach for performing automatic euphemism detection. We (1) identify and correct potentially mislabelled rows in the dataset, (2) curate an expanded corpus called EuphAug, (3) leverage model representations of Potentially Euphemistic Terms (PETs), and (4) explore using representations of semantically close sentences to aid in classification. Using our augmented dataset and kNN-based methods, EUREKA was able to achieve state-of-the-art results on the public leaderboard of the Euphemism Detection Shared Task, ranking first with a macro F1 score of 0.881. Our code is available at https://github.com/sedrickkeh/EUREKA.