Abstract:Disease progression models are widely used to inform the diagnosis and treatment of many progressive diseases. However, a significant limitation of existing models is that they do not account for health disparities that can bias the observed data. To address this, we develop an interpretable Bayesian disease progression model that captures three key health disparities: certain patient populations may (1) start receiving care only when their disease is more severe, (2) experience faster disease progression even while receiving care, or (3) receive follow-up care less frequently conditional on disease severity. We show theoretically and empirically that failing to account for disparities produces biased estimates of severity (underestimating severity for disadvantaged groups, for example). On a dataset of heart failure patients, we show that our model can identify groups that face each type of health disparity, and that accounting for these disparities meaningfully shifts which patients are considered high-risk.
Abstract:The increased capabilities of generative AI have dramatically expanded its possible use cases in medicine. We provide a comprehensive overview of generative AI use cases for clinicians, patients, clinical trial organizers, researchers, and trainees. We then discuss the many challenges -- including maintaining privacy and security, improving transparency and interpretability, upholding equity, and rigorously evaluating models -- which must be overcome to realize this potential, and the open research directions they give rise to.
Abstract:Artificial Intelligence (AI), like any transformative technology, has the potential to be a double-edged sword, leading either toward significant advancements or detrimental outcomes for society as a whole. As is often the case when it comes to widely-used technologies in market economies (e.g., cars and semiconductor chips), commercial interest tends to be the predominant guiding factor. The AI community is at risk of becoming polarized to either take a laissez-faire attitude toward AI development, or to call for government overregulation. Between these two poles we argue for the community of AI practitioners to consciously and proactively work for the common good. This paper offers a blueprint for a new type of innovation infrastructure including 18 concrete milestones to guide AI research in that direction. Our view is that we are still in the early days of practical AI, and focused efforts by practitioners, policymakers, and other stakeholders can still maximize the upsides of AI and minimize its downsides. We talked to luminaries such as recent Nobelist John Jumper on science, President Barack Obama on governance, former UN Ambassador and former National Security Advisor Susan Rice on security, philanthropist Eric Schmidt on several topics, and science fiction novelist Neal Stephenson on entertainment. This ongoing dialogue and collaborative effort has produced a comprehensive, realistic view of what the actual impact of AI could be, from a diverse assembly of thinkers with deep understanding of this technology and these domains. From these exchanges, five recurring guidelines emerged, which form the cornerstone of a framework for beginning to harness AI in service of the public good. They not only guide our efforts in discovery but also shape our approach to deploying this transformative technology responsibly and ethically.
Abstract:Generating social networks is essential for many applications, such as epidemic modeling and social simulations. Prior approaches either involve deep learning models, which require many observed networks for training, or stylized models, which are limited in their realism and flexibility. In contrast, LLMs offer the potential for zero-shot and flexible network generation. However, two key questions are: (1) are LLM's generated networks realistic, and (2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, community structure, and degree. However, we find that LLMs emphasize political homophily over all other types of homophily and overestimate political homophily relative to real-world measures.
Abstract:To what extent to do LLMs align with human perceptions of safety? We study this question via *annotation alignment*, the extent to which LLMs and humans agree when annotating the safety of user-chatbot conversations. We leverage the recent DICES dataset (Aroyo et al., 2023), in which 350 conversations are each rated for safety by 112 annotators spanning 10 race-gender groups. GPT-4 achieves a Pearson correlation of $r = 0.59$ with the average annotator rating, higher than the median annotator's correlation with the average ($r=0.51$). We show that larger datasets are needed to resolve whether GPT-4 exhibits disparities in how well it correlates with demographic groups. Also, there is substantial idiosyncratic variation in correlation *within* groups, suggesting that race & gender do not fully capture differences in alignment. Finally, we find that GPT-4 cannot predict when one demographic group finds a conversation more unsafe than another.
Abstract:In high-stakes domains like clinical reasoning, AI assistants powered by large language models (LLMs) are yet to be reliable and safe. We identify a key obstacle towards reliability: existing LLMs are trained to answer any question, even with incomplete context in the prompt or insufficient parametric knowledge. We propose to change this paradigm to develop more careful LLMs that ask follow-up questions to gather necessary and sufficient information and respond reliably. We introduce MEDIQ, a framework to simulate realistic clinical interactions, which incorporates a Patient System and an adaptive Expert System. The Patient may provide incomplete information in the beginning; the Expert refrains from making diagnostic decisions when unconfident, and instead elicits missing details from the Patient via follow-up questions. To evaluate MEDIQ, we convert MEDQA and CRAFT-MD -- medical benchmarks for diagnostic question answering -- into an interactive setup. We develop a reliable Patient system and prototype several Expert systems, first showing that directly prompting state-of-the-art LLMs to ask questions degrades the quality of clinical reasoning, indicating that adapting LLMs to interactive information-seeking settings is nontrivial. We then augment the Expert with a novel abstention module to better estimate model confidence and decide whether to ask more questions, thereby improving diagnostic accuracy by 20.3%; however, performance still lags compared to an (unrealistic in practice) upper bound when full information is given upfront. Further analyses reveal that interactive performance can be improved by filtering irrelevant contexts and reformatting conversations. Overall, our paper introduces a novel problem towards LLM reliability, a novel MEDIQ framework, and highlights important future directions to extend the information-seeking abilities of LLM assistants in critical domains.
Abstract:Growing interest and investment in the capabilities of foundation models has positioned such systems to impact a wide array of public services. Alongside these opportunities is the risk that these systems reify existing power imbalances and cause disproportionate harm to marginalized communities. Participatory approaches hold promise to instead lend agency and decision-making power to marginalized stakeholders. But existing approaches in participatory AI/ML are typically deeply grounded in context - how do we apply these approaches to foundation models, which are, by design, disconnected from context? Our paper interrogates this question. First, we examine existing attempts at incorporating participation into foundation models. We highlight the tension between participation and scale, demonstrating that it is intractable for impacted communities to meaningfully shape a foundation model that is intended to be universally applicable. In response, we develop a blueprint for participatory foundation models that identifies more local, application-oriented opportunities for meaningful participation. In addition to the "foundation" layer, our framework proposes the "subfloor'' layer, in which stakeholders develop shared technical infrastructure, norms and governance for a grounded domain, and the "surface'' layer, in which affected communities shape the use of a foundation model for a specific downstream task. The intermediate "subfloor'' layer scopes the range of potential harms to consider, and affords communities more concrete avenues for deliberation and intervention. At the same time, it avoids duplicative effort by scaling input across relevant use cases. Through three case studies in clinical care, financial services, and journalism, we illustrate how this multi-layer model can create more meaningful opportunities for participation than solely intervening at the foundation layer.
Abstract:The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the \ac{ML4H} community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field.
Abstract:Decision-makers often observe the occurrence of events through a reporting process. City governments, for example, rely on resident reports to find and then resolve urban infrastructural problems such as fallen street trees, flooded basements, or rat infestations. Without additional assumptions, there is no way to distinguish events that occur but are not reported from events that truly did not occur--a fundamental problem in settings with positive-unlabeled data. Because disparities in reporting rates correlate with resident demographics, addressing incidents only on the basis of reports leads to systematic neglect in neighborhoods that are less likely to report events. We show how to overcome this challenge by leveraging the fact that events are spatially correlated. Our framework uses a Bayesian spatial latent variable model to infer event occurrence probabilities and applies it to storm-induced flooding reports in New York City, further pooling results across multiple storms. We show that a model accounting for under-reporting and spatial correlation predicts future reports more accurately than other models, and further induces a more equitable set of inspections: its allocations better reflect the population and provide equitable service to non-white, less traditionally educated, and lower-income residents. This finding reflects heterogeneous reporting behavior learned by the model: reporting rates are higher in Census tracts with higher populations, proportions of white residents, and proportions of owner-occupied households. Our work lays the groundwork for more equitable proactive government services, even with disparate reporting behavior.
Abstract:Machine learning models are often trained to predict the outcome resulting from a human decision. For example, if a doctor decides to test a patient for disease, will the patient test positive? A challenge is that the human decision censors the outcome data: we only observe test outcomes for patients doctors historically tested. Untested patients, for whom outcomes are unobserved, may differ from tested patients along observed and unobserved dimensions. We propose a Bayesian model class which captures this setting. The purpose of the model is to accurately estimate risk for both tested and untested patients. Estimating this model is challenging due to the wide range of possibilities for untested patients. To address this, we propose two domain constraints which are plausible in health settings: a prevalence constraint, where the overall disease prevalence is known, and an expertise constraint, where the human decision-maker deviates from purely risk-based decision-making only along a constrained feature set. We show theoretically and on synthetic data that domain constraints improve parameter inference. We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses, its inferred testing policy captures known public health policies, and it can identify suboptimalities in test allocation. Though our case study is in healthcare, our analysis reveals a general class of domain constraints which can improve model estimation in many settings.