Abstract:The gold standard in human-AI collaboration is complementarity -- when combined performance exceeds both the human and algorithm alone. We investigate this challenge in binary classification settings where the goal is to maximize 0-1 accuracy. Given two or more agents who can make calibrated probabilistic predictions, we show a "No Free Lunch"-style result. Any deterministic collaboration strategy (a function mapping calibrated probabilities into binary classifications) that does not essentially always defer to the same agent will sometimes perform worse than the least accurate agent. In other words, complementarity cannot be achieved "for free." The result does suggest one model of collaboration with guarantees, where one agent identifies "obvious" errors of the other agent. We also use the result to understand the necessary conditions enabling the success of other collaboration techniques, providing guidance to human-AI collaboration.
Abstract:There are an increasing number of domains in which artificial intelligence (AI) systems both surpass human ability and accurately model human behavior. This introduces the possibility of algorithmically-informed teaching in these domains through more relatable AI partners and deeper insights into human decision-making. Critical to achieving this goal, however, is coherently modeling human behavior at various skill levels. Chess is an ideal model system for conducting research into this kind of human-AI alignment, with its rich history as a pivotal testbed for AI research, mature superhuman AI systems like AlphaZero, and precise measurements of skill via chess rating systems. Previous work in modeling human decision-making in chess uses completely independent models to capture human style at different skill levels, meaning they lack coherence in their ability to adapt to the full spectrum of human improvement and are ultimately limited in their effectiveness as AI partners and teaching tools. In this work, we propose a unified modeling approach for human-AI alignment in chess that coherently captures human style across different skill levels and directly captures how people improve. Recognizing the complex, non-linear nature of human learning, we introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions, enabling our model to be sensitive to evolving player skill. Our experimental results demonstrate that this unified framework significantly enhances the alignment between AI and human players across a diverse range of expertise levels, paving the way for deeper insights into human decision-making and AI-guided teaching tools.
Abstract:Recent work suggests that large language models may implicitly learn world models. How should we assess this possibility? We formalize this question for the case where the underlying reality is governed by a deterministic finite automaton. This includes problems as diverse as simple logical reasoning, geographic navigation, game-playing, and chemistry. We propose new evaluation metrics for world model recovery inspired by the classic Myhill-Nerode theorem from language theory. We illustrate their utility in three domains: game playing, logic puzzles, and navigation. In all domains, the generative models we consider do well on existing diagnostics for assessing world models, but our evaluation metrics reveal their world models to be far less coherent than they appear. Such incoherence creates fragility: using a generative model to solve related but subtly different tasks can lead it to fail badly. Building generative models that meaningfully capture the underlying logic of the domains they model would be immensely valuable; our results suggest new ways to assess how close a given model is to that goal.
Abstract:One uniquely human trait is our inability to be random. We see and produce patterns where there should not be any and we do so in a predictable way. LLMs are supplied with human data and prone to human biases. In this work, we explore how LLMs approach randomness and where and how they fail through the lens of the well studied phenomena of generating binary random sequences. We find that GPT 4 and Llama 3 exhibit and exacerbate nearly every human bias we test in this context, but GPT 3.5 exhibits more random behavior. This dichotomy of randomness or humaness is proposed as a fundamental question of LLMs and that either behavior may be useful in different circumstances.
Abstract:Powerful artificial intelligence systems are often used in settings where they must interact with agents that are computationally much weaker, for example when they work alongside humans or operate in complex environments where some tasks are handled by algorithms, heuristics, or other entities of varying computational power. For AI agents to successfully interact in these settings, however, achieving superhuman performance alone is not sufficient; they also need to account for suboptimal actions or idiosyncratic style from their less-skilled counterparts. We propose a formal evaluation framework for assessing the compatibility of near-optimal AI with interaction partners who may have much lower levels of skill; we use popular collaborative chess variants as model systems to study and develop AI agents that can successfully interact with lower-skill entities. Traditional chess engines designed to output near-optimal moves prove to be inadequate partners when paired with engines of various lower skill levels in this domain, as they are not designed to consider the presence of other agents. We contribute three methodologies to explicitly create skill-compatible AI agents in complex decision-making settings, and two chess game frameworks designed to foster collaboration between powerful AI agents and less-skilled partners. On these frameworks, our agents outperform state-of-the-art chess AI (based on AlphaZero) despite being weaker in conventional chess, demonstrating that skill-compatibility is a tangible trait that is qualitatively and measurably distinct from raw performance. Our evaluations further explore and clarify the mechanisms by which our agents achieve skill-compatibility.
Abstract:Although current large language models are complex, the most basic specifications of the underlying language generation problem itself are simple to state: given a finite set of training samples from an unknown language, produce valid new strings from the language that don't already appear in the training data. Here we ask what we can conclude about language generation using only this specification, without further assumptions. In particular, suppose that an adversary enumerates the strings of an unknown target language L that is known only to come from one of a possibly infinite list of candidates. A computational agent is trying to learn to generate from this language; we say that the agent generates from L in the limit if after some finite point in the enumeration of L, the agent is able to produce new elements that come exclusively from L and that have not yet been presented by the adversary. Our main result is that there is an agent that is able to generate in the limit for every countable list of candidate languages. This contrasts dramatically with negative results due to Gold and Angluin in a well-studied model of language learning where the goal is to identify an unknown language from samples; the difference between these results suggests that identifying a language is a fundamentally different problem than generating from it.
Abstract:Graphs data is crucial for many applications, and much of it exists in the relations described in textual format. As a result, being able to accurately recall and encode a graph described in earlier text is a basic yet pivotal ability that LLMs need to demonstrate if they are to perform reasoning tasks that involve graph-structured information. Human performance at graph recall has been studied by cognitive scientists for decades, and has been found to often exhibit certain structural patterns of bias that align with human handling of social relationships. To date, however, we know little about how LLMs behave in analogous graph recall tasks: do their recalled graphs also exhibit certain biased patterns, and if so, how do they compare with humans and affect other graph reasoning tasks? In this work, we perform the first systematical study of graph recall by LLMs, investigating the accuracy and biased microstructures (local structural patterns) in their recall. We find that LLMs not only underperform often in graph recall, but also tend to favor more triangles and alternating 2-paths. Moreover, we find that more advanced LLMs have a striking dependence on the domain that a real-world graph comes from -- by yielding the best recall accuracy when the graph is narrated in a language style consistent with its original domain.
Abstract:We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.
Abstract:A broad current application of algorithms is in formal and quantitative measures of murky concepts -- like merit -- to make decisions. When people strategically respond to these sorts of evaluations in order to gain favorable decision outcomes, their behavior can be subjected to moral judgments. They may be described as 'gaming the system' or 'cheating,' or (in other cases) investing 'honest effort' or 'improving.' Machine learning literature on strategic behavior has tried to describe these dynamics by emphasizing the efforts expended by decision subjects hoping to obtain a more favorable assessment -- some works offer ways to preempt or prevent such manipulations, some differentiate 'gaming' from 'improvement' behavior, while others aim to measure the effort burden or disparate effects of classification systems. We begin from a different starting point: that the design of an evaluation itself can be understood as furthering goals held by the evaluator which may be misaligned with broader societal goals. To develop the idea that evaluation represents a strategic interaction in which both the evaluator and the subject of their evaluation are operating out of self-interest, we put forward a model that represents the process of evaluation using three interacting agents: a decision subject, an evaluator, and society, representing a bundle of values and oversight mechanisms. We highlight our model's applicability to a number of social systems where one or two players strategically undermine the others' interests to advance their own. Treating evaluators as themselves strategic allows us to re-cast the scrutiny directed at decision subjects, towards the incentives that underpin institutional designs of evaluations. The moral standing of strategic behaviors often depend on the moral standing of the evaluations and incentives that provoke such behaviors.
Abstract:Predicting future outcomes is a prevalent application of machine learning in social impact domains. Examples range from predicting student success in education to predicting disease risk in healthcare. Practitioners recognize that the ultimate goal is not just to predict but to act effectively. Increasing evidence suggests that relying on outcome predictions for downstream interventions may not have desired results. In most domains there exists a multitude of possible interventions for each individual, making the challenge of taking effective action more acute. Even when causal mechanisms connecting the individual's latent states to outcomes is well understood, in any given instance (a specific student or patient), practitioners still need to infer -- from budgeted measurements of latent states -- which of many possible interventions will be most effective for this individual. With this in mind, we ask: when are accurate predictors of outcomes helpful for identifying the most suitable intervention? Through a simple model encompassing actions, latent states, and measurements, we demonstrate that pure outcome prediction rarely results in the most effective policy for taking actions, even when combined with other measurements. We find that except in cases where there is a single decisive action for improving the outcome, outcome prediction never maximizes "action value", the utility of taking actions. Making measurements of actionable latent states, where specific actions lead to desired outcomes, considerably enhances the action value compared to outcome prediction, and the degree of improvement depends on action costs and the outcome model. This analysis emphasizes the need to go beyond generic outcome prediction in interventional settings by incorporating knowledge of plausible actions and latent states.