Abstract:Large language models (LLMs) are being used in economics research to form predictions, label text, simulate human responses, generate hypotheses, and even produce data for times and places where such data don't exist. While these uses are creative, are they valid? When can we abstract away from the inner workings of an LLM and simply rely on their outputs? We develop an econometric framework to answer this question. Our framework distinguishes between two types of empirical tasks. Using LLM outputs for prediction problems (including hypothesis generation) is valid under one condition: no "leakage" between the LLM's training dataset and the researcher's sample. Using LLM outputs for estimation problems to automate the measurement of some economic concept (expressed by some text or from human subjects) requires an additional assumption: LLM outputs must be as good as the gold standard measurements they replace. Otherwise estimates can be biased, even if LLM outputs are highly accurate but not perfectly so. We document the extent to which these conditions are violated and the implications for research findings in illustrative applications to finance and political economy. We also provide guidance to empirical researchers. The only way to ensure no training leakage is to use open-source LLMs with documented training data and published weights. The only way to deal with LLM measurement error is to collect validation data and model the error structure. A corollary is that if such conditions can't be met for a candidate LLM application, our strong advice is: don't.
Abstract:Recent work suggests that large language models may implicitly learn world models. How should we assess this possibility? We formalize this question for the case where the underlying reality is governed by a deterministic finite automaton. This includes problems as diverse as simple logical reasoning, geographic navigation, game-playing, and chemistry. We propose new evaluation metrics for world model recovery inspired by the classic Myhill-Nerode theorem from language theory. We illustrate their utility in three domains: game playing, logic puzzles, and navigation. In all domains, the generative models we consider do well on existing diagnostics for assessing world models, but our evaluation metrics reveal their world models to be far less coherent than they appear. Such incoherence creates fragility: using a generative model to solve related but subtly different tasks can lead it to fail badly. Building generative models that meaningfully capture the underlying logic of the domains they model would be immensely valuable; our results suggest new ways to assess how close a given model is to that goal.
Abstract:What makes large language models (LLMs) impressive is also what makes them hard to evaluate: their diversity of uses. To evaluate these models, we must understand the purposes they will be used for. We consider a setting where these deployment decisions are made by people, and in particular, people's beliefs about where an LLM will perform well. We model such beliefs as the consequence of a human generalization function: having seen what an LLM gets right or wrong, people generalize to where else it might succeed. We collect a dataset of 19K examples of how humans make generalizations across 79 tasks from the MMLU and BIG-Bench benchmarks. We show that the human generalization function can be predicted using NLP methods: people have consistent structured ways to generalize. We then evaluate LLM alignment with the human generalization function. Our results show that -- especially for cases where the cost of mistakes is high -- more capable models (e.g. GPT-4) can do worse on the instances people choose to use them for, exactly because they are not aligned with the human generalization function.
Abstract:Although current large language models are complex, the most basic specifications of the underlying language generation problem itself are simple to state: given a finite set of training samples from an unknown language, produce valid new strings from the language that don't already appear in the training data. Here we ask what we can conclude about language generation using only this specification, without further assumptions. In particular, suppose that an adversary enumerates the strings of an unknown target language L that is known only to come from one of a possibly infinite list of candidates. A computational agent is trying to learn to generate from this language; we say that the agent generates from L in the limit if after some finite point in the enumeration of L, the agent is able to produce new elements that come exclusively from L and that have not yet been presented by the adversary. Our main result is that there is an agent that is able to generate in the limit for every countable list of candidate languages. This contrasts dramatically with negative results due to Gold and Angluin in a well-studied model of language learning where the goal is to identify an unknown language from samples; the difference between these results suggests that identifying a language is a fundamentally different problem than generating from it.
Abstract:Machine learning models depend on the quality of input data. As electronic health records are widely adopted, the amount of data in health care is growing, along with complaints about the quality of medical notes. We use two prediction tasks, readmission prediction and in-hospital mortality prediction, to characterize the value of information in medical notes. We show that as a whole, medical notes only provide additional predictive power over structured information in readmission prediction. We further propose a probing framework to select parts of notes that enable more accurate predictions than using all notes, despite that the selected information leads to a distribution shift from the training data ("all notes"). Finally, we demonstrate that models trained on the selected valuable information achieve even better predictive performance, with only 6.8% of all the tokens for readmission prediction.
Abstract:Understanding what leads to effective conversations can aid the design of better computer-mediated communication platforms. In particular, prior observational work has sought to identify behaviors of individuals that correlate to their conversational efficiency. However, translating such correlations to causal interpretations is a necessary step in using them in a prescriptive fashion to guide better designs and policies. In this work, we formally describe the problem of drawing causal links between conversational behaviors and outcomes. We focus on the task of determining a particular type of policy for a text-based crisis counseling platform: how best to allocate counselors based on their behavioral tendencies exhibited in their past conversations. We apply arguments derived from causal inference to underline key challenges that arise in conversational settings where randomized trials are hard to implement. Finally, we show how to circumvent these inference challenges in our particular domain, and illustrate the potential benefits of an allocation policy informed by the resulting prescriptive information.
Abstract:We use machine learning to provide a tractable measure of the amount of predictable variation in the data that a theory captures, which we call its "completeness." We apply this measure to three problems: assigning certain equivalents to lotteries, initial play in games, and human generation of random sequences. We discover considerable variation in the completeness of existing models, which sheds light on whether to focus on developing better models with the same features or instead to look for new features that will improve predictions. We also illustrate how and why completeness varies with the experiments considered, which highlights the role played in choosing which experiments to run.
Abstract:In a wide array of areas, algorithms are matching and surpassing the performance of human experts, leading to consideration of the roles of human judgment and algorithmic prediction in these domains. The discussion around these developments, however, has implicitly equated the specific task of prediction with the general task of automation. We argue here that automation is broader than just a comparison of human versus algorithmic performance on a task; it also involves the decision of which instances of the task to give to the algorithm in the first place. We develop a general framework that poses this latter decision as an optimization problem, and we show how basic heuristics for this optimization problem can lead to performance gains even on heavily-studied applications of AI in medicine. Our framework also serves to highlight how effective automation depends crucially on estimating both algorithmic and human error on an instance-by-instance basis, and our results show how improvements in these error estimation problems can yield significant gains for automation as well.
Abstract:The law forbids discrimination. But the ambiguity of human decision-making often makes it extraordinarily hard for the legal system to know whether anyone has actually discriminated. To understand how algorithms affect discrimination, we must therefore also understand how they affect the problem of detecting discrimination. By one measure, algorithms are fundamentally opaque, not just cognitively but even mathematically. Yet for the task of proving discrimination, processes involving algorithms can provide crucial forms of transparency that are otherwise unavailable. These benefits do not happen automatically. But with appropriate requirements in place, the use of algorithms will make it possible to more easily examine and interrogate the entire decision process, thereby making it far easier to know whether discrimination has occurred. By forcing a new level of specificity, the use of algorithms also highlights, and makes transparent, central tradeoffs among competing values. Algorithms are not only a threat to be regulated; with the right safeguards in place, they have the potential to be a positive force for equity.
Abstract:Databases of electronic health records (EHRs) are increasingly used to inform clinical decisions. Machine learning methods can find patterns in EHRs that are predictive of future adverse outcomes. However, statistical models may be built upon patterns of health-seeking behavior that vary across patient subpopulations, leading to poor predictive performance when training on one patient population and predicting on another. This note proposes two tests to better measure and understand model generalization. We use these tests to compare models derived from two data sources: (i) historical medical records, and (ii) electrocardiogram (EKG) waveforms. In a predictive task, we show that EKG-based models can be more stable than EHR-based models across different patient populations.