Abstract:Autonomous driving evaluation requires simulation environments that closely replicate actual road conditions, including real-world sensory data and responsive feedback loops. However, many existing simulations need to predict waypoints along fixed routes on public datasets or synthetic photorealistic data, \ie, open-loop simulation usually lacks the ability to assess dynamic decision-making. While the recent efforts of closed-loop simulation offer feedback-driven environments, they cannot process visual sensor inputs or produce outputs that differ from real-world data. To address these challenges, we propose DrivingSphere, a realistic and closed-loop simulation framework. Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios. In specific, our framework includes a Dynamic Environment Composition module that constructs a detailed 4D driving world with a format of occupancy equipping with static backgrounds and dynamic objects, and a Visual Scene Synthesis module that transforms this data into high-fidelity, multi-view video outputs, ensuring spatial and temporal consistency. By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms, ultimately advancing the development of more reliable autonomous cars. The benchmark will be publicly released.
Abstract:Mixture of Experts (MoE) offers remarkable performance and computational efficiency by selectively activating subsets of model parameters. Traditionally, MoE models use homogeneous experts, each with identical capacity. However, varying complexity in input data necessitates experts with diverse capabilities, while homogeneous MoE hinders effective expert specialization and efficient parameter utilization. In this study, we propose a novel Heterogeneous Mixture of Experts (HMoE), where experts differ in size and thus possess diverse capacities. This heterogeneity allows for more specialized experts to handle varying token complexities more effectively. To address the imbalance in expert activation, we propose a novel training objective that encourages the frequent activation of smaller experts, enhancing computational efficiency and parameter utilization. Extensive experiments demonstrate that HMoE achieves lower loss with fewer activated parameters and outperforms conventional homogeneous MoE models on various pre-training evaluation benchmarks. Codes will be released upon acceptance.
Abstract:Monocular 3D object detection has become a mainstream approach in automatic driving for its easy application. A prominent advantage is that it does not need LiDAR point clouds during the inference. However, most current methods still rely on 3D point cloud data for labeling the ground truths used in the training phase. This inconsistency between the training and inference makes it hard to utilize the large-scale feedback data and increases the data collection expenses. To bridge this gap, we propose a new weakly supervised monocular 3D objection detection method, which can train the model with only 2D labels marked on images. To be specific, we explore three types of consistency in this task, i.e. the projection, multi-view and direction consistency, and design a weakly-supervised architecture based on these consistencies. Moreover, we propose a new 2D direction labeling method in this task to guide the model for accurate rotation direction prediction. Experiments show that our weakly-supervised method achieves comparable performance with some fully supervised methods. When used as a pre-training method, our model can significantly outperform the corresponding fully-supervised baseline with only 1/3 3D labels. https://github.com/weakmono3d/weakmono3d
Abstract:Making deep convolutional neural networks more accurate typically comes at the cost of increased computational and memory resources. In this paper, we exploit the fact that the importance of features computed by convolutional layers is highly input-dependent, and propose feature boosting and suppression (FBS), a new method to predictively amplify salient convolutional channels and skip unimportant ones at run-time. FBS introduces small auxiliary connections to existing convolutional layers. In contrast to channel pruning methods which permanently remove channels, it preserves the full network structures and accelerates convolution by dynamically skipping unimportant input and output channels. FBS-augmented networks are trained with conventional stochastic gradient descent, making it readily available for many state-of-the-art CNNs. We compare FBS to a range of existing channel pruning and dynamic execution schemes and demonstrate large improvements on ImageNet classification. Experiments show that FBS can accelerate VGG-16 by $5\times$ and improve the speed of ResNet-18 by $2\times$, both with less than $0.6\%$ top-5 accuracy loss.