Abstract:Metal artifacts in CT slices have long posed challenges in medical diagnostics. These artifacts degrade image quality, resulting in suboptimal visualization and complicating the accurate interpretation of tissues adjacent to metal implants. To address these issues, we introduce the Latent Gemstone Spectral Imaging (GSI) Alignment Framework, which effectively reduces metal artifacts while avoiding the introduction of noise information. Our work is based on a key finding that even artifact-affected ordinary CT sequences contain sufficient information to discern detailed structures. The challenge lies in the inability to clearly represent this information. To address this issue, we developed an Alignment Framework that adjusts the representation of ordinary CT images to match GSI CT sequences. GSI is an advanced imaging technique using multiple energy levels to mitigate artifacts caused by metal implants. By aligning the representation to GSI data, we can effectively suppress metal artifacts while clearly revealing detailed structure, without introducing extraneous information into CT sequences. To facilitate the application, we propose a new dataset, Artifacts-GSI, captured from real patients with metal implants, and establish a new benchmark based on this dataset. Experimental results show that our method significantly reduces metal artifacts and greatly enhances the readability of CT slices. All our code and data are available at: https://um-lab.github.io/GSI-MAR/
Abstract:In this paper, we introduce DC (Decouple)-ControlNet, a highly flexible and precisely controllable framework for multi-condition image generation. The core idea behind DC-ControlNet is to decouple control conditions, transforming global control into a hierarchical system that integrates distinct elements, contents, and layouts. This enables users to mix these individual conditions with greater flexibility, leading to more efficient and accurate image generation control. Previous ControlNet-based models rely solely on global conditions, which affect the entire image and lack the ability of element- or region-specific control. This limitation reduces flexibility and can cause condition misunderstandings in multi-conditional image generation. To address these challenges, we propose both intra-element and Inter-element Controllers in DC-ControlNet. The Intra-Element Controller handles different types of control signals within individual elements, accurately describing the content and layout characteristics of the object. For interactions between elements, we introduce the Inter-Element Controller, which accurately handles multi-element interactions and occlusion based on user-defined relationships. Extensive evaluations show that DC-ControlNet significantly outperforms existing ControlNet models and Layout-to-Image generative models in terms of control flexibility and precision in multi-condition control.
Abstract:Autonomous driving evaluation requires simulation environments that closely replicate actual road conditions, including real-world sensory data and responsive feedback loops. However, many existing simulations need to predict waypoints along fixed routes on public datasets or synthetic photorealistic data, \ie, open-loop simulation usually lacks the ability to assess dynamic decision-making. While the recent efforts of closed-loop simulation offer feedback-driven environments, they cannot process visual sensor inputs or produce outputs that differ from real-world data. To address these challenges, we propose DrivingSphere, a realistic and closed-loop simulation framework. Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios. In specific, our framework includes a Dynamic Environment Composition module that constructs a detailed 4D driving world with a format of occupancy equipping with static backgrounds and dynamic objects, and a Visual Scene Synthesis module that transforms this data into high-fidelity, multi-view video outputs, ensuring spatial and temporal consistency. By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms, ultimately advancing the development of more reliable autonomous cars. The benchmark will be publicly released.
Abstract:Recent advancements in sRGB-to-RAW de-rendering have increasingly emphasized metadata-driven approaches to reconstruct RAW data from sRGB images, supplemented by partial RAW information. In image-based de-rendering, metadata is commonly obtained through sampling, whereas in video tasks, it is typically derived from the initial frame. The distinct metadata requirements necessitate specialized network architectures, leading to architectural incompatibilities that increase deployment complexity. In this paper, we propose RAWMamba, a Mamba-based unified framework developed for sRGB-to-RAW de-rendering across both image and video domains. The core of RAWMamba is the Unified Metadata Embedding (UME) module, which harmonizes diverse metadata types into a unified representation. In detail, a multi-perspective affinity modeling method is proposed to promote the extraction of reference information. In addition, we introduce the Local Tone-Aware Mamba (LTA-Mamba) module, which captures long-range dependencies to enable effective global propagation of metadata. Experimental results demonstrate that the proposed RAWMamba achieves state-of-the-art performance, yielding high-quality RAW data reconstruction.
Abstract:Recent diffusion-based Single-image 3D portrait generation methods typically employ 2D diffusion models to provide multi-view knowledge, which is then distilled into 3D representations. However, these methods usually struggle to produce high-fidelity 3D models, frequently yielding excessively blurred textures. We attribute this issue to the insufficient consideration of cross-view consistency during the diffusion process, resulting in significant disparities between different views and ultimately leading to blurred 3D representations. In this paper, we address this issue by comprehensively exploiting multi-view priors in both the conditioning and diffusion procedures to produce consistent, detail-rich portraits. From the conditioning standpoint, we propose a Hybrid Priors Diffsion model, which explicitly and implicitly incorporates multi-view priors as conditions to enhance the status consistency of the generated multi-view portraits. From the diffusion perspective, considering the significant impact of the diffusion noise distribution on detailed texture generation, we propose a Multi-View Noise Resamplig Strategy integrated within the optimization process leveraging cross-view priors to enhance representation consistency. Extensive experiments demonstrate that our method can produce 3D portraits with accurate geometry and rich details from a single image. The project page is at \url{https://haoran-wei.github.io/Portrait-Diffusion}.
Abstract:Vision-based semantic occupancy and flow prediction plays a crucial role in providing spatiotemporal cues for real-world tasks, such as autonomous driving. Existing methods prioritize higher accuracy to cater to the demands of these tasks. In this work, we strive to improve performance by introducing a series of targeted improvements for 3D semantic occupancy prediction and flow estimation. First, we introduce an occlusion-aware adaptive lifting mechanism with a depth denoising technique to improve the robustness of 2D-to-3D feature transformation and reduce the reliance on depth priors. Second, we strengthen the semantic consistency between 3D features and their original 2D modalities by utilizing shared semantic prototypes to jointly constrain both 2D and 3D features. This is complemented by confidence- and category-based sampling strategies to tackle long-tail challenges in 3D space. To alleviate the feature encoding burden in the joint prediction of semantics and flow, we propose a BEV cost volume-based prediction method that links flow and semantic features through a cost volume and employs a classification-regression supervision scheme to address the varying flow scales in dynamic scenes. Our purely convolutional architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy achieving state-of-the-art results on multiple benchmarks. On Occ3D and training without the camera visible mask, our ALOcc achieves an absolute gain of 2.5\% in terms of RayIoU while operating at a comparable speed compared to the state-of-the-art, using the same input size (256$\times$704) and ResNet-50 backbone. Our method also achieves 2nd place in the CVPR24 Occupancy and Flow Prediction Competition.
Abstract:Recovering high-quality depth maps from compressed sources has gained significant attention due to the limitations of consumer-grade depth cameras and the bandwidth restrictions during data transmission. However, current methods still suffer from two challenges. First, bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information. Second, densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene. To address these challenges, we propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution that decouples the high-quality depth map reconstruction process by handling global and detailed geometric features separately. To be specific, we propose the fine geometry detail encoder (FGDE), which is designed to aggregate fine geometry details in high-resolution low-level image features while simultaneously enriching them with complementary information from low-resolution context-level image features. In addition, we develop the global geometry encoder (GGE) that aims at suppressing noise and extracting global geometric information effectively via constructing compact feature representation in a low-rank space. We conduct experiments on multiple benchmark datasets, demonstrating that our GDNet significantly outperforms current methods in terms of geometric consistency and detail recovery. In the ECCV 2024 AIM Compressed Depth Upsampling Challenge, our solution won the 1st place award. Our codes will be available.
Abstract:In the area of self-supervised monocular depth estimation, models that utilize rich-resource inputs, such as high-resolution and multi-frame inputs, typically achieve better performance than models that use ordinary single image input. However, these rich-resource inputs may not always be available, limiting the applicability of these methods in general scenarios. In this paper, we propose Rich-resource Prior Depth estimator (RPrDepth), which only requires single input image during the inference phase but can still produce highly accurate depth estimations comparable to rich resource based methods. Specifically, we treat rich-resource data as prior information and extract features from it as reference features in an offline manner. When estimating the depth for a single-image image, we search for similar pixels from the rich-resource features and use them as prior information to estimate the depth. Experimental results demonstrate that our model outperform other single-image model and can achieve comparable or even better performance than models with rich-resource inputs, only using low-resolution single-image input.
Abstract:Concurrent processing of multiple autonomous driving 3D perception tasks within the same spatiotemporal scene poses a significant challenge, in particular due to the computational inefficiencies and feature competition between tasks when using traditional multi-task learning approaches. This paper addresses these issues by proposing a novel unified representation, RepVF, which harmonizes the representation of various perception tasks such as 3D object detection and 3D lane detection within a single framework. RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model that significantly reduces computational redundancy and feature competition. Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks by utilizing a hierarchical structure of queries that implicitly model the relationships both between and within tasks. This approach eliminates the need for task-specific heads and parameters, fundamentally reducing the conflicts inherent in traditional multi-task learning paradigms. We validate our approach by combining labels from the OpenLane dataset with the Waymo Open dataset. Our work presents a significant advancement in the efficiency and effectiveness of multi-task perception in autonomous driving, offering a new perspective on handling multiple 3D perception tasks synchronously and in parallel. The code will be available at: https://github.com/jbji/RepVF
Abstract:In this technical report, we present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ Dataset Challenge at CVPR 2024. Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling. Initially, we independently train the occupancy model, followed by flow prediction using sequential frame integration. Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth. Experimental results on the nuScenes dataset demonstrate significant improvements in accuracy and robustness, showcasing the effectiveness of our approach in real-world scenarios. Our single model based on Swin-Base ranks second on the public leaderboard, validating the potential of our method in advancing autonomous car perception systems.