SenseTime Research
Abstract:We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT
Abstract:Recent studies have shown that Large Language Models (LLMs) have the potential to process extremely long text. Many works only evaluate LLMs' long-text processing ability on the language modeling task, with perplexity (PPL) as the evaluation metric. However, in our study, we find that there is no correlation between PPL and LLMs' long-text understanding ability. Besides, PPL may only reflect the model's ability to model local information instead of catching long-range dependency. Therefore, only using PPL to prove the model could process long text is inappropriate. The local focus feature of PPL could also explain some existing phenomena, such as the great extrapolation ability of the position method ALiBi. When evaluating a model's ability in long text, we might pay more attention to PPL's limitation and avoid overly relying on it.
Abstract:Recent mainstream event argument extraction methods process each event in isolation, resulting in inefficient inference and ignoring the correlations among multiple events. To address these limitations, here we propose a multiple-event argument extraction model DEEIA (Dependency-guided Encoding and Event-specific Information Aggregation), capable of extracting arguments from all events within a document simultaneouslyThe proposed DEEIA model employs a multi-event prompt mechanism, comprising DE and EIA modules. The DE module is designed to improve the correlation between prompts and their corresponding event contexts, whereas the EIA module provides event-specific information to improve contextual understanding. Extensive experiments show that our method achieves new state-of-the-art performance on four public datasets (RAMS, WikiEvents, MLEE, and ACE05), while significantly saving the inference time compared to the baselines. Further analyses demonstrate the effectiveness of the proposed modules.
Abstract:With the increasingly giant scales of (causal) large language models (LLMs), the inference efficiency comes as one of the core concerns along the improved performance. In contrast to the memory footprint, the latency bottleneck seems to be of greater importance as there can be billions of requests to a LLM (e.g., GPT-4) per day. The bottleneck is mainly due to the autoregressive innateness of LLMs, where tokens can only be generated sequentially during decoding. To alleviate the bottleneck, the idea of speculative execution, which originates from the field of computer architecture, is introduced to LLM decoding in a \textit{draft-then-verify} style. Under this regime, a sequence of tokens will be drafted in a fast pace by utilizing some heuristics, and then the tokens shall be verified in parallel by the LLM. As the costly sequential inference is parallelized, LLM decoding speed can be significantly boosted. Driven by the success of LLMs in recent couple of years, a growing literature in this direction has emerged. Yet, there lacks a position survey to summarize the current landscape and draw a roadmap for future development of this promising area. To meet this demand, we present the very first survey paper that reviews and unifies literature of speculative execution in LLMs (e.g., blockwise parallel decoding, speculative decoding, etc.) in a comprehensive framework and a systematic taxonomy. Based on the taxonomy, we present a critical review and comparative analysis of the current arts. Finally we highlight various key challenges and future directions to further develop the area.
Abstract:Text-to-Vis is an emerging task in the natural language processing (NLP) area that aims to automatically generate data visualizations from natural language questions (NLQs). Despite their progress, existing text-to-vis models often heavily rely on lexical matching between words in the questions and tokens in data schemas. This overreliance on lexical matching may lead to a diminished level of model robustness against input variations. In this study, we thoroughly examine the robustness of current text-to-vis models, an area that has not previously been explored. In particular, we construct the first robustness dataset nvBench-Rob, which contains diverse lexical and phrasal variations based on the original text-to-vis benchmark nvBench. Then, we found that the performance of existing text-to-vis models on this new dataset dramatically drops, implying that these methods exhibit inadequate robustness overall. Finally, we propose a novel framework based on Retrieval-Augmented Generation (RAG) technique, named GRED, specifically designed to address input perturbations in these two variants. The framework consists of three parts: NLQ-Retrieval Generator, Visualization Query-Retrieval Retuner and Annotation-based Debugger, which are used to tackle the challenges posed by natural language variants, programming style differences and data schema variants, respectively. Extensive experimental evaluations show that, compared to the state-of-the-art model RGVisNet in the Text-to-Vis field, GRED performs better in terms of model robustness, with a 32% increase in accuracy on the proposed nvBench-Rob dataset.
Abstract:Tensor clustering has become an important topic, specifically in spatio-temporal modeling, due to its ability to cluster spatial modes (e.g., stations or road segments) and temporal modes (e.g., time of the day or day of the week). Our motivating example is from subway passenger flow modeling, where similarities between stations are commonly found. However, the challenges lie in the innate high-dimensionality of tensors and also the potential existence of anomalies. This is because the three tasks, i.e., dimension reduction, clustering, and anomaly decomposition, are inter-correlated to each other, and treating them in a separate manner will render a suboptimal performance. Thus, in this work, we design a tensor-based subspace clustering and anomaly decomposition technique for simultaneously outlier-robust dimension reduction and clustering for high-dimensional tensors. To achieve this, a novel low-rank robust subspace clustering decomposition model is proposed by combining Tucker decomposition, sparse anomaly decomposition, and subspace clustering. An effective algorithm based on Block Coordinate Descent is proposed to update the parameters. Prudent experiments prove the effectiveness of the proposed framework via the simulation study, with a gain of +25% clustering accuracy than benchmark methods in a hard case. The interrelations of the three tasks are also analyzed via ablation studies, validating the interrelation assumption. Moreover, a case study in the station clustering based on real passenger flow data is conducted, with quite valuable insights discovered.
Abstract:In modern manufacturing, most of the product lines are conforming. Few products are nonconforming but with different defect types. The identification of defect types can help further root cause diagnosis of production lines. With the sensing development, continuous signals of process variables can be collected in high resolution, which can be regarded as multichannel functional data. They have abundant information to characterize the process and help identify the defect types. Motivated by a real example from the pipe tightening process, we target at detect classification when each sample is a multichannel functional data. However, the available samples for each defect type are limited and imbalanced. Moreover, the functions are partially observed since the pre-tightening process before the pipe tightening process is unobserved. To classify the defect samples based on imbalanced, multichannel, and partially observed functional data is very important but challenging. Thus, we propose an innovative framework known as "Multichannel Partially Observed Functional Modeling for Defect Classification with an Imbalanced Dataset" (MPOFI). The framework leverages the power of deep metric learning in conjunction with a neural network specially crafted for processing functional data. This paper introduces a neural network explicitly tailored for handling multichannel and partially observed functional data, complemented by developing a corresponding loss function for training on imbalanced datasets. The results from a real-world case study demonstrate the superior accuracy of our framework when compared to existing benchmarks.
Abstract:Contrasts with existing works which all consider nodes as functions and use edges to represent the relationships between different functions. We target at network modeling whose edges are functional data and transform the adjacency matrix into a functional adjacency tensor, introducing an additional dimension dedicated to function representation. Tucker functional decomposition is used for the functional adjacency tensor, and to further consider the community between nodes, we regularize the basis matrices to be symmetrical. Furthermore, to deal with irregular observations of the functional edges, we conduct model inference to solve a tensor completion problem. It is optimized by a Riemann conjugate gradient descent method. Besides these, we also derive several theorems to show the desirable properties of the functional edged network model. Finally, we evaluate the efficacy of our proposed model using simulation data and real metro system data from Hong Kong and Singapore.
Abstract:Sequential change point detection for multivariate autocorrelated data is a very common problem in practice. However, when the sensing resources are limited, only a subset of variables from the multivariate system can be observed at each sensing time point. This raises the problem of partially observable multi-sensor sequential change point detection. For it, we propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS). It models multivariate time series via a state space model (SSM), and uses an adaptive sampling policy for efficient change point detection and localization. A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is developed. How its detection power relates to the adaptive sampling strategy is analyzed. Meanwhile, by treating the detection power as a reward, its connection with the online combinatorial multi-armed bandit (CMAB) problem is formulated and an adaptive upper confidence region algorithm is proposed for adaptive sampling policy design. Theoretical analysis of the asymptotic average detection delay is performed, and thorough numerical studies with synthetic data and real-world data are conducted to demonstrate the effectiveness of our method.
Abstract:Training or finetuning large-scale language models (LLMs) requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One approach is to treat these models as black boxes and use forward passes (Inference APIs) to interact with them. Current research focuses on adapting these black-box models to downstream tasks using gradient-free prompt optimization, but this often involves an expensive process of searching task-specific prompts. Therefore, we are motivated to study black-box language model adaptation without prompt search. Specifically, we introduce a label-enhanced cross-attention network called CrossTune, which models the semantic relatedness between the input text sequence and task-specific label descriptions. Its effectiveness is examined in the context of few-shot text classification. To improve the generalization of CrossTune, we utilize ChatGPT to generate additional training data through in-context learning. A switch mechanism is implemented to exclude low-quality ChatGPT-generated data. Through extensive experiments on seven benchmark text classification datasets, we demonstrate that our proposed approach outperforms the previous state-of-the-art gradient-free black-box tuning method by 5.7% on average. Even without using ChatGPT-augmented data, CrossTune performs better or comparably than previous black-box tuning methods, suggesting the effectiveness of our approach.