Mitsubishi Electric Research Laboratories, Cambridge, USA
Abstract:Novelty search (NS) refers to a class of exploration algorithms that automatically uncover diverse system behaviors through simulations or experiments. Systematically obtaining diverse outcomes is a key component in many real-world design problems such as material and drug discovery, neural architecture search, reinforcement learning, and robot navigation. Since the relationship between the inputs and outputs (i.e., behaviors) of these complex systems is typically not available in closed form, NS requires a black-box perspective. Consequently, popular NS algorithms rely on evolutionary optimization and other meta-heuristics that require intensive sampling of the input space, which is impractical when the system is expensive to evaluate. We propose a Bayesian optimization inspired algorithm for sample-efficient NS that is specifically designed for such expensive black-box systems. Our approach models the input-to-behavior mapping with multi-output Gaussian processes (MOGP) and selects the next point to evaluate by maximizing a novelty metric that depends on a posterior sample drawn from the MOGP that promotes both exploration and exploitation. By leveraging advances in efficient posterior sampling and high-dimensional Gaussian process modeling, we discuss how our approach can be made scalable with respect to both amount of data and number of inputs. We test our approach on ten synthetic benchmark problems and eight real-world problems (with up to 2133 inputs) including new applications such as discovery of diverse metal organic frameworks for use in clean energy technology. We show that our approach greatly outperforms existing NS algorithms by finding substantially larger sets of diverse behaviors under limited sample budgets.
Abstract:In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data, and a state-space component captures the temporal relationship. This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions. Our objective is to design the optimal controller using limited data from the \textit{target system} (the system of interest). To this end, we employ an implicit model-agnostic meta-learning (iMAML) framework that leverages information from \textit{source systems} (systems that share similarities with the target system) to expedite training in the target system and enhance its control performance. The framework consists of two phases: the (offine) meta-training phase learns a aggregated NSSM using data from source systems, and the (online) meta-inference phase quickly adapts this aggregated model to the target system using only a few data points and few online training iterations, based on local loss function gradients. The iMAML algorithm exploits the implicit function theorem to exactly compute the gradient during training, without relying on the entire optimization path. By focusing solely on the optimal solution, rather than the path, we can meta-train with less storage complexity and fewer approximations than other contemporary meta-learning algorithms. We demonstrate through numerical examples that our proposed method can yield accurate predictive models by adaptation, resulting in a downstream MPC that outperforms several baselines.
Abstract:We consider the problem of safe multi-agent motion planning for drones in uncertain, cluttered workspaces. For this problem, we present a tractable motion planner that builds upon the strengths of reinforcement learning and constrained-control-based trajectory planning. First, we use single-agent reinforcement learning to learn motion plans from data that reach the target but may not be collision-free. Next, we use a convex optimization, chance constraints, and set-based methods for constrained control to ensure safety, despite the uncertainty in the workspace, agent motion, and sensing. The proposed approach can handle state and control constraints on the agents, and enforce collision avoidance among themselves and with static obstacles in the workspace with high probability. The proposed approach yields a safe, real-time implementable, multi-agent motion planner that is simpler to train than methods based solely on learning. Numerical simulations and experiments show the efficacy of the approach.
Abstract:Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints and abstract mathematical models developed in scientific and engineering domains. As opposed to purely data-driven methods, PIML models can be trained from additional information obtained by enforcing physical laws such as energy and mass conservation. More broadly, PIML models can include abstract properties and conditions such as stability, convexity, or invariance. The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models. This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control. Specifically, the paper covers an overview of the theory, fundamental concepts and methods, tools, and applications on topics of: 1) physics-informed learning for system identification; 2) physics-informed learning for control; 3) analysis and verification of PIML models; and 4) physics-informed digital twins. The paper is concluded with a perspective on open challenges and future research opportunities.
Abstract:We study the problem of performance optimization of closed-loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated to be effective for improving closed-loop performance by automatically tuning controller gains or reference setpoints in a model-free manner. However, BO methods have rarely been tested on dynamical systems with unmodeled constraints and time-varying ambient conditions. In this paper, we propose a violation-aware contextual BO algorithm (VACBO) that optimizes closed-loop performance while simultaneously learning constraint-feasible solutions under time-varying ambient conditions. Unlike classical constrained BO methods which allow unlimited constraint violations, or 'safe' BO algorithms that are conservative and try to operate with near-zero violations, we allow budgeted constraint violations to improve constraint learning and accelerate optimization. We demonstrate the effectiveness of our proposed VACBO method for energy minimization of industrial vapor compression systems under time-varying ambient temperature and humidity.
Abstract:Deep neural state-space models (SSMs) provide a powerful tool for modeling dynamical systems solely using operational data. Typically, neural SSMs are trained using data collected from the actual system under consideration, despite the likely existence of operational data from similar systems which have previously been deployed in the field. In this paper, we propose the use of model-agnostic meta-learning (MAML) for constructing deep encoder network-based SSMs, by leveraging a combination of archived data from similar systems (used to meta-train offline) and limited data from the actual system (used for rapid online adaptation). We demonstrate using a numerical example that meta-learning can result in more accurate neural SSM models than supervised- or transfer-learning, despite few adaptation steps and limited online data. Additionally, we show that by carefully partitioning and adapting the encoder layers while fixing the state-transition operator, we can achieve comparable performance to MAML while reducing online adaptation complexity.
Abstract:Bayesian optimization (BO) has demonstrated potential for optimizing control performance in data-limited settings, especially for systems with unknown dynamics or unmodeled performance objectives. The BO algorithm efficiently trades-off exploration and exploitation by leveraging uncertainty estimates using surrogate models. These surrogates are usually learned using data collected from the target dynamical system to be optimized. Intuitively, the convergence rate of BO is better for surrogate models that can accurately predict the target system performance. In classical BO, initial surrogate models are constructed using very limited data points, and therefore rarely yield accurate predictions of system performance. In this paper, we propose the use of meta-learning to generate an initial surrogate model based on data collected from performance optimization tasks performed on a variety of systems that are different to the target system. To this end, we employ deep kernel networks (DKNs) which are simple to train and which comprise encoded Gaussian process models that integrate seamlessly with classical BO. The effectiveness of our proposed DKN-BO approach for speeding up control system performance optimization is demonstrated using a well-studied nonlinear system with unknown dynamics and an unmodeled performance function.
Abstract:We study the problem of performance optimization of closed-loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated effective for improving closed-loop performance by automatically tuning controller gains or reference setpoints in a model-free manner. However, BO methods have rarely been tested on dynamical systems with unmodeled constraints. In this paper, we propose a violation-aware BO algorithm (VABO) that optimizes closed-loop performance while simultaneously learning constraint-feasible solutions. Unlike classical constrained BO methods which allow an unlimited constraint violations, or safe BO algorithms that are conservative and try to operate with near-zero violations, we allow budgeted constraint violations to improve constraint learning and accelerate optimization. We demonstrate the effectiveness of our proposed VABO method for energy minimization of industrial vapor compression systems.
Abstract:Physics-informed dynamical system models form critical components of digital twins of the built environment. These digital twins enable the design of energy-efficient infrastructure, but must be properly calibrated to accurately reflect system behavior for downstream prediction and analysis. Dynamical system models of modern buildings are typically described by a large number of parameters and incur significant computational expenditure during simulations. To handle large-scale calibration of digital twins without exorbitant simulations, we propose ANP-BBO: a scalable and parallelizable batch-wise Bayesian optimization (BBO) methodology that leverages attentive neural processes (ANPs).
Abstract:Data generated from dynamical systems with unknown dynamics enable the learning of state observers that are: robust to modeling error, computationally tractable to design, and capable of operating with guaranteed performance. In this paper, a modular design methodology is formulated, that consists of three design phases: (i) an initial robust observer design that enables one to learn the dynamics without allowing the state estimation error to diverge (hence, safe); (ii) a learning phase wherein the unmodeled components are estimated using Bayesian optimization and Gaussian processes; and, (iii) a re-design phase that leverages the learned dynamics to improve convergence rate of the state estimation error. The potential of our proposed learning-based observer is demonstrated on a benchmark nonlinear system. Additionally, certificates of guaranteed estimation performance are provided.