Abstract:Foundation models (FMs), large deep learning models pre-trained on vast, unlabeled datasets, exhibit powerful capabilities in understanding complex patterns and generating sophisticated outputs. However, they often struggle to adapt to specific tasks. Reinforcement learning (RL), which allows agents to learn through interaction and feedback, offers a compelling solution. Integrating RL with FMs enables these models to achieve desired outcomes and excel at particular tasks. Additionally, RL can be enhanced by leveraging the reasoning and generalization capabilities of FMs. This synergy is revolutionizing various fields, including robotics. FMs, rich in knowledge and generalization, provide robots with valuable information, while RL facilitates learning and adaptation through real-world interactions. This survey paper comprehensively explores this exciting intersection, examining how these paradigms can be integrated to advance robotic intelligence. We analyze the use of foundation models as action planners, the development of robotics-specific foundation models, and the mutual benefits of combining FMs with RL. Furthermore, we present a taxonomy of integration approaches, including large language models, vision-language models, diffusion models, and transformer-based RL models. We also explore how RL can utilize world representations learned from FMs to enhance robotic task execution. Our survey aims to synthesize current research and highlight key challenges in robotic reasoning and control, particularly in the context of integrating FMs and RL--two rapidly evolving technologies. By doing so, we seek to spark future research and emphasize critical areas that require further investigation to enhance robotics. We provide an updated collection of papers based on our taxonomy, accessible on our open-source project website at: https://github.com/clmoro/Robotics-RL-FMs-Integration.
Abstract:Recently introduced by some of the authors, the in-context identification paradigm aims at estimating, offline and based on synthetic data, a meta-model that describes the behavior of a whole class of systems. Once trained, this meta-model is fed with an observed input/output sequence (context) generated by a real system to predict its behavior in a zero-shot learning fashion. In this paper, we enhance the original meta-modeling framework through three key innovations: by formulating the learning task within a probabilistic framework; by managing non-contiguous context and query windows; and by adopting recurrent patching to effectively handle long context sequences. The efficacy of these modifications is demonstrated through a numerical example focusing on the Wiener-Hammerstein system class, highlighting the model's enhanced performance and scalability.
Abstract:The landscape of Deep Learning has experienced a major shift with the pervasive adoption of Transformer-based architectures, particularly in Natural Language Processing (NLP). Novel avenues for physical applications, such as solving Partial Differential Equations and Image Vision, have been explored. However, in challenging domains like robotics, where high non-linearity poses significant challenges, Transformer-based applications are scarce. While Transformers have been used to provide robots with knowledge about high-level tasks, few efforts have been made to perform system identification. This paper proposes a novel methodology to learn a meta-dynamical model of a high-dimensional physical system, such as the Franka robotic arm, using a Transformer-based architecture without prior knowledge of the system's physical parameters. The objective is to predict quantities of interest (end-effector pose and joint positions) given the torque signals for each joint. This prediction can be useful as a component for Deep Model Predictive Control frameworks in robotics. The meta-model establishes the correlation between torques and positions and predicts the output for the complete trajectory. This work provides empirical evidence of the efficacy of the in-context learning paradigm, suggesting future improvements in learning the dynamics of robotic systems without explicit knowledge of physical parameters. Code, videos, and supplementary materials can be found at project website. See https://sites.google.com/view/robomorph/
Abstract:Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms. Our strategy, named LightCPPgen, integrates a LightGBM-based predictive model with a genetic algorithm (GA), enabling the systematic generation and optimization of CPP sequences. At the core of our methodology is the development of an accurate, efficient, and interpretable predictive model, which utilizes 20 explainable features to shed light on the critical factors influencing CPP translocation capacity. The CPP predictive model works synergistically with an optimization algorithm, which is tuned to enhance computational efficiency while maintaining optimization performance. The GA solutions specifically target the candidate sequences' penetrability score, while trying to maximize similarity with the original non-penetrating peptide in order to retain its original biological and physicochemical properties. By prioritizing the synthesis of only the most promising CPP candidates, LightCPPgen can drastically reduce the time and cost associated with wet lab experiments. In summary, our research makes a substantial contribution to the field of CPP design, offering a robust framework that combines ML and optimization techniques to facilitate the rational design of penetrating peptides, by enhancing the explainability and interpretability of the design process.
Abstract:With a specific emphasis on control design objectives, achieving accurate system modeling with limited complexity is crucial in parametric system identification. The recently introduced deep structured state-space models (SSM), which feature linear dynamical blocks as key constituent components, offer high predictive performance. However, the learned representations often suffer from excessively large model orders, which render them unsuitable for control design purposes. The current paper addresses this challenge by means of system-theoretic model order reduction techniques that target the linear dynamical blocks of SSMs. We introduce two regularization terms which can be incorporated into the training loss for improved model order reduction. In particular, we consider modal $\ell_1$ and Hankel nuclear norm regularization to promote sparsity, allowing one to retain only the relevant states without sacrificing accuracy. The presented regularizers lead to advantages in terms of parsimonious representations and faster inference resulting from the reduced order models. The effectiveness of the proposed methodology is demonstrated using real-world ground vibration data from an aircraft.
Abstract:This paper addresses the challenge of overfitting in the learning of dynamical systems by introducing a novel approach for the generation of synthetic data, aimed at enhancing model generalization and robustness in scenarios characterized by data scarcity. Central to the proposed methodology is the concept of knowledge transfer from systems within the same class. Specifically, synthetic data is generated through a pre-trained meta-model that describes a broad class of systems to which the system of interest is assumed to belong. Training data serves a dual purpose: firstly, as input to the pre-trained meta model to discern the system's dynamics, enabling the prediction of its behavior and thereby generating synthetic output sequences for new input sequences; secondly, in conjunction with synthetic data, to define the loss function used for model estimation. A validation dataset is used to tune a scalar hyper-parameter balancing the relative importance of training and synthetic data in the definition of the loss function. The same validation set can be also used for other purposes, such as early stopping during the training, fundamental to avoid overfitting in case of small-size training datasets. The efficacy of the approach is shown through a numerical example that highlights the advantages of integrating synthetic data into the system identification process.
Abstract:Satellites equipped with optical sensors capture high-resolution imagery, providing valuable insights into various environmental phenomena. In recent years, there has been a surge of research focused on addressing some challenges in remote sensing, ranging from water detection in diverse landscapes to the segmentation of mountainous and terrains. Ongoing investigations goals to enhance the precision and efficiency of satellite imagery analysis. Especially, there is a growing emphasis on developing methodologies for accurate water body detection, snow and clouds, important for environmental monitoring, resource management, and disaster response. Within this context, this paper focus on the cloud segmentation from remote sensing imagery. Accurate remote sensing data analysis can be challenging due to the presence of clouds in optical sensor-based applications. The quality of resulting products such as applications and research is directly impacted by cloud detection, which plays a key role in the remote sensing data processing pipeline. This paper examines seven cutting-edge semantic segmentation and detection algorithms applied to clouds identification, conducting a benchmark analysis to evaluate their architectural approaches and identify the most performing ones. To increase the model's adaptability, critical elements including the type of imagery and the amount of spectral bands used during training are analyzed. Additionally, this research tries to produce machine learning algorithms that can perform cloud segmentation using only a few spectral bands, including RGB and RGBN-IR combinations. The model's flexibility for a variety of applications and user scenarios is assessed by using imagery from Sentinel-2 and Landsat-8 as datasets. This benchmark can be reproduced using the material from this github link: https://github.com/toelt-llc/cloud_segmentation_comparative.
Abstract:In-context system identification aims at constructing meta-models to describe classes of systems, differently from traditional approaches that model single systems. This paradigm facilitates the leveraging of knowledge acquired from observing the behaviour of different, yet related dynamics. This paper discusses the role of meta-model adaptation. Through numerical examples, we demonstrate how meta-model adaptation can enhance predictive performance in three realistic scenarios: tailoring the meta-model to describe a specific system rather than a class; extending the meta-model to capture the behaviour of systems beyond the initial training class; and recalibrating the model for new prediction tasks. Results highlight the effectiveness of meta-model adaptation to achieve a more robust and versatile meta-learning framework for system identification.
Abstract:Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.
Abstract:This work systematically investigates the oxidation of extra virgin olive oil (EVOO) under accelerated storage conditions with UV absorption and total fluorescence spectroscopy. With the large amount of data collected, it proposes a method to monitor the oil's quality based on machine learning applied to highly-aggregated data. EVOO is a high-quality vegetable oil that has earned worldwide reputation for its numerous health benefits and excellent taste. Despite its outstanding quality, EVOO degrades over time owing to oxidation, which can affect both its health qualities and flavour. Therefore, it is highly relevant to quantify the effects of oxidation on EVOO and develop methods to assess it that can be easily implemented under field conditions, rather than in specialized laboratories. The following study demonstrates that fluorescence spectroscopy has the capability to monitor the effect of oxidation and assess the quality of EVOO, even when the data are highly aggregated. It shows that complex laboratory equipment is not necessary to exploit fluorescence spectroscopy using the proposed method and that cost-effective solutions, which can be used in-field by non-scientists, could provide an easily-accessible assessment of the quality of EVOO.