Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Jul 10, 2025
Abstract:In recent years, large-scale pre-trained multimodal models (LMMs) generally emerge to integrate the vision and language modalities, achieving considerable success in multimodal tasks, such as text-image classification. The growing size of LMMs, however, results in a significant computational cost for fine-tuning these models for downstream tasks. Hence, prompt-based interaction strategy is studied to align modalities more efficiently. In this context, we propose a novel efficient prompt-based multimodal interaction strategy, namely Efficient Prompt Interaction for text-image Classification (EPIC). Specifically, we utilize temporal prompts on intermediate layers, and integrate different modalities with similarity-based prompt interaction, to leverage sufficient information exchange between modalities. Utilizing this approach, our method achieves reduced computational resource consumption and fewer trainable parameters (about 1\% of the foundation model) compared to other fine-tuning strategies. Furthermore, it demonstrates superior performance on the UPMC-Food101 and SNLI-VE datasets, while achieving comparable performance on the MM-IMDB dataset.
* arXiv admin note: substantial text overlap with arXiv:2401.14856
Via

Jul 10, 2025
Abstract:Time, cost, and energy efficiency are critical considerations in Deep-Learning (DL), particularly when processing long texts. Transformers, which represent the current state of the art, exhibit quadratic computational complexity relative to input length, making them inefficient for extended documents. This study introduces a novel model architecture that combines Graph Neural Networks (GNNs) and Convolutional Neural Networks (CNNs), integrated with a real-time, end-to-end graph generation mechanism. The model processes compact batches of character-level inputs without requiring padding or truncation. To enhance performance while maintaining high speed and efficiency, the model incorporates information from Large Language Models (LLMs), such as token embeddings and sentiment polarities, through efficient dictionary lookups. It captures local contextual patterns using CNNs, expands local receptive fields via lattice-based graph structures, and employs small-world graphs to aggregate document-level information. The generated graphs exhibit structural properties indicative of meaningful semantic organization, with an average clustering coefficient of approximately 0.45 and an average shortest path length ranging between 4 and 5. The model is evaluated across multiple text classification tasks, including sentiment analysis and news-categorization, and is compared against state-of-the-art models. Experimental results confirm the proposed model's efficiency and competitive performance.
Via

Jul 09, 2025
Abstract:Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary (including worst-case) levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, R\'enyi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., more than 15pp accuracy increase in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
Via

Jul 09, 2025
Abstract:This paper presents the first application of Kolmogorov-Arnold Convolution for Text (KAConvText) in sentence classification, addressing three tasks: imbalanced binary hate speech detection, balanced multiclass news classification, and imbalanced multiclass ethnic language identification. We investigate various embedding configurations, comparing random to fastText embeddings in both static and fine-tuned settings, with embedding dimensions of 100 and 300 using CBOW and Skip-gram models. Baselines include standard CNNs and CNNs augmented with a Kolmogorov-Arnold Network (CNN-KAN). In addition, we investigated KAConvText with different classification heads - MLP and KAN, where using KAN head supports enhanced interpretability. Results show that KAConvText-MLP with fine-tuned fastText embeddings achieves the best performance of 91.23% accuracy (F1-score = 0.9109) for hate speech detection, 92.66% accuracy (F1-score = 0.9267) for news classification, and 99.82% accuracy (F1-score = 0.9982) for language identification.
* 10 pages, 3 figures, 4 tables
Via

Jul 10, 2025
Abstract:Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.
* International Conference on Computer Vision, ICCV 2025
Via

Jul 09, 2025
Abstract:We present FRaN-X, a Framing and Narratives Explorer that automatically detects entity mentions and classifies their narrative roles directly from raw text. FRaN-X comprises a two-stage system that combines sequence labeling with fine-grained role classification to reveal how entities are portrayed as protagonists, antagonists, or innocents, using a unique taxonomy of 22 fine-grained roles nested under these three main categories. The system supports five languages (Bulgarian, English, Hindi, Russian, and Portuguese) and two domains (the Russia-Ukraine Conflict and Climate Change). It provides an interactive web interface for media analysts to explore and compare framing across different sources, tackling the challenge of automatically detecting and labeling how entities are framed. Our system allows end users to focus on a single article as well as analyze up to four articles simultaneously. We provide aggregate level analysis including an intuitive graph visualization that highlights the narrative a group of articles are pushing. Our system includes a search feature for users to look up entities of interest, along with a timeline view that allows analysts to track an entity's role transitions across different contexts within the article. The FRaN-X system and the trained models are licensed under an MIT License. FRaN-X is publicly accessible at https://fran-x.streamlit.app/ and a video demonstration is available at https://youtu.be/VZVi-1B6yYk.
* 19 pages, 13 figures, submitted to EMNLP 2025 - Demo Track
Via

Jul 08, 2025
Abstract:This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.
Via

Jul 08, 2025
Abstract:Automatic speech quality assessment plays a crucial role in the development of speech synthesis systems, but existing models exhibit significant performance variations across different granularity levels of prediction tasks. This paper proposes an enhanced MOS prediction system based on self-supervised learning speech models, incorporating a Mixture of Experts (MoE) classification head and utilizing synthetic data from multiple commercial generation models for data augmentation. Our method builds upon existing self-supervised models such as wav2vec2, designing a specialized MoE architecture to address different types of speech quality assessment tasks. We also collected a large-scale synthetic speech dataset encompassing the latest text-to-speech, speech conversion, and speech enhancement systems. However, despite the adoption of the MoE architecture and expanded dataset, the model's performance improvements in sentence-level prediction tasks remain limited. Our work reveals the limitations of current methods in handling sentence-level quality assessment, provides new technical pathways for the field of automatic speech quality assessment, and also delves into the fundamental causes of performance differences across different assessment granularities.
Via

Jul 03, 2025
Abstract:This paper introduces Natural Language Processing for identifying ``true'' green patents from official supporting documents. We start our training on about 12.4 million patents that had been classified as green from previous literature. Thus, we train a simple neural network to enlarge a baseline dictionary through vector representations of expressions related to environmental technologies. After testing, we find that ``true'' green patents represent about 20\% of the total of patents classified as green from previous literature. We show heterogeneity by technological classes, and then check that `true' green patents are about 1\% less cited by following inventions. In the second part of the paper, we test the relationship between patenting and a dashboard of firm-level financial accounts in the European Union. After controlling for reverse causality, we show that holding at least one ``true'' green patent raises sales, market shares, and productivity. If we restrict the analysis to high-novelty ``true'' green patents, we find that they also yield higher profits. Our findings underscore the importance of using text analyses to gauge finer-grained patent classifications that are useful for policymaking in different domains.
Via

Jul 02, 2025
Abstract:Foreign accent conversion (FAC) in speech processing remains a challenging task. Building on the remarkable success of large language models (LLMs) in Text-to-Speech (TTS) tasks, this study investigates the adaptation of LLM-based techniques for FAC, which we term SpeechAccentLLM. At the core of this framework, we introduce SpeechCodeVAE, the first model to integrate connectionist temporal classification (CTC) directly into codebook discretization for speech content tokenization. This novel architecture generates tokens with a unique "locality" property, as validated by experiments demonstrating optimal trade-offs among content faithfulness, temporal coherence, and structural recoverability. Then, to address data scarcity for the FAC module, we adopted a multitask learning strategy that jointly trains the FAC and TTS modules. Beyond mitigating data limitations, this approach yielded accelerated convergence and superior speech quality compared to standalone FAC training. Moreover, leveraging the salient properties of our discrete speech representations, we introduce SpeechRestorer, a postprocessing architecture designed to refine LLM-generated outputs. This module effectively mitigates stochastic errors prevalent in LLM inference pipelines while enhancing prosodic continuity, as validated by ablation experiments.
* 10 pages, includes references, 4 figures, 4 tables
Via
