Accurate extraction of rural roads from high-resolution remote sensing imagery is essential for infrastructure planning and sustainable development. However, this task presents unique challenges in rural settings due to several factors. These include high intra-class variability and low inter-class separability from diverse surface materials, frequent vegetation occlusions that disrupt spatial continuity, and narrow road widths that exacerbate detection difficulties. Existing methods, primarily optimized for structured urban environments, often underperform in these scenarios as they overlook such distinctive characteristics. To address these challenges, we propose DSFC-Net, a dual-encoder framework that synergistically fuses spatial and frequency-domain information. Specifically, a CNN branch is employed to capture fine-grained local road boundaries and short-range continuity, while a novel Spatial-Frequency Hybrid Transformer (SFT) is introduced to robustly model global topological dependencies against vegetation occlusions. Distinct from standard attention mechanisms that suffer from frequency bias, the SFT incorporates a Cross-Frequency Interaction Attention (CFIA) module that explicitly decouples high- and low-frequency information via a Laplacian Pyramid strategy. This design enables the dynamic interaction between spatial details and frequency-aware global contexts, effectively preserving the connectivity of narrow roads. Furthermore, a Channel Feature Fusion Module (CFFM) is proposed to bridge the two branches by adaptively recalibrating channel-wise feature responses, seamlessly integrating local textures with global semantics for accurate segmentation. Comprehensive experiments on the WHU-RuR+, DeepGlobe, and Massachusetts datasets validate the superiority of DSFC-Net over state-of-the-art approaches.
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
Intelligent Transportation Systems (ITS) demand real-time collision prediction to ensure road safety and reduce accident severity. Conventional approaches rely on transmitting raw video or high-dimensional sensory data from roadside units (RSUs) to vehicles, which is impractical under vehicular communication bandwidth and latency constraints. In this work, we propose a semantic V2X framework in which RSU-mounted cameras generate spatiotemporal semantic embeddings of future frames using the Video Joint Embedding Predictive Architecture (V-JEPA). To evaluate the system, we construct a digital twin of an urban traffic environment enabling the generation of d verse traffic scenarios with both safe and collision events. These embeddings of the future frame, extracted from V-JEPA, capture task-relevant traffic dynamics and are transmitted via V2X links to vehicles, where a lightweight attentive probe and classifier decode them to predict imminent collisions. By transmitting only semantic embeddings instead of raw frames, the proposed system significantly reduces communication overhead while maintaining predictive accuracy. Experimental results demonstrate that the framework with an appropriate processing method achieves a 10% F1-score improvement for collision prediction while reducing transmission requirements by four orders of magnitude compared to raw video. This validates the potential of semantic V2X communication to enable cooperative, real-time collision prediction in ITS.
In this paper, we propose an ETA model (Estimated Time of Arrival) that leverages an attention mechanism over historical road speed patterns. As autonomous driving and intelligent transportation systems become increasingly prevalent, the need for accurate and reliable ETA estimation has grown, playing a vital role in navigation, mobility planning, and traffic management. However, predicting ETA remains a challenging task due to the dynamic and complex nature of traffic flow. Traditional methods often combine real-time and historical traffic data in simplistic ways, or rely on complex rule-based computations. While recent deep learning models have shown potential, they often require high computational costs and do not effectively capture the spatio-temporal patterns crucial for ETA prediction. ETA prediction inherently involves spatio-temporal causality, and our proposed model addresses this by leveraging attention mechanisms to extract and utilize temporal features accumulated at each spatio-temporal point along a route. This architecture enables efficient and accurate ETA estimation while keeping the model lightweight and scalable. We validate our approach using real-world driving datasets and demonstrate that our approach outperforms existing baselines by effectively integrating road characteristics, real-time traffic conditions, and historical speed patterns in a task-aware manner.
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
Distracted driving is a major cause of traffic collisions, calling for robust and scalable detection methods. Vision-language models (VLMs) enable strong zero-shot image classification, but existing VLM-based distracted driver detectors often underperform in real-world conditions. We identify subject-specific appearance variations (e.g., clothing, age, and gender) as a key bottleneck: VLMs entangle these factors with behavior cues, leading to decisions driven by who the driver is rather than what the driver is doing. To address this, we propose a subject decoupling framework that extracts a driver appearance embedding and removes its influence from the image embedding prior to zero-shot classification, thereby emphasizing distraction-relevant evidence. We further orthogonalize text embeddings via metric projection onto Stiefel manifold to improve separability while staying close to the original semantics. Experiments demonstrate consistent gains over prior baselines, indicating the promise of our approach for practical road-safety applications.
This study presents a comprehensive comparative analysis of custom-built Convolutional Neural Networks (CNNs) against popular pre-trained architectures (ResNet-18 and VGG-16) using both feature extraction and transfer learning approaches. We evaluated these models across five diverse image classification datasets from Bangladesh: Footpath Vision, Auto Rickshaw Detection, Mango Image Classification, Paddy Variety Recognition, and Road Damage Detection. Our experimental results demonstrate that transfer learning with fine-tuning consistently outperforms both custom CNNs built from scratch and feature extraction methods, achieving accuracy improvements ranging from 3% to 76% across different datasets. Notably, ResNet-18 with fine-tuning achieved perfect 100% accuracy on the Road Damage BD dataset. While custom CNNs offer advantages in model size (3.4M parameters vs. 11-134M for pre-trained models) and training efficiency on simpler tasks, pre-trained models with transfer learning provide superior performance, particularly on complex classification tasks with limited training data. This research provides practical insights for practitioners in selecting appropriate deep learning approaches based on dataset characteristics, computational resources, and performance requirements.
Deep learning has transformed visual data analysis, with Convolutional Neural Networks (CNNs) becoming highly effective in learning meaningful feature representations directly from images. Unlike traditional manual feature engineering methods, CNNs automatically extract hierarchical visual patterns, enabling strong performance across diverse real-world contexts. This study investigates the effectiveness of CNN-based architectures across five heterogeneous datasets spanning agricultural and urban domains: mango variety classification, paddy variety identification, road surface condition assessment, auto-rickshaw detection, and footpath encroachment monitoring. These datasets introduce varying challenges, including differences in illumination, resolution, environmental complexity, and class imbalance, necessitating adaptable and robust learning models. We evaluate a lightweight, task-specific custom CNN alongside established deep architectures, including ResNet-18 and VGG-16, trained both from scratch and using transfer learning. Through systematic preprocessing, augmentation, and controlled experimentation, we analyze how architectural complexity, model depth, and pre-training influence convergence, generalization, and performance across datasets of differing scale and difficulty. The key contributions of this work are: (1) the development of an efficient custom CNN that achieves competitive performance across multiple application domains, and (2) a comprehensive comparative analysis highlighting when transfer learning and deep architectures provide substantial advantages, particularly in data-constrained environments. These findings offer practical insights for deploying deep learning models in resource-limited yet high-impact real-world visual classification tasks.
Deep learning has advanced vectorized road extraction in urban settings, yet off-road environments remain underexplored and challenging. A significant domain gap causes advanced models to fail in wild terrains due to two key issues: lack of large-scale vectorized datasets and structural weakness in prevailing methods. Models such as SAM-Road employ a node-centric paradigm that reasons at sparse endpoints, making them fragile to occlusions and ambiguous junctions in off-road scenes, leading to topological errors. This work addresses these limitations in two complementary ways. First, we release WildRoad, a global off-road road network dataset constructed efficiently with a dedicated interactive annotation tool tailored for road-network labeling. Second, we introduce MaGRoad (Mask-aware Geodesic Road network extractor), a path-centric framework that aggregates multi-scale visual evidence along candidate paths to infer connectivity robustly. Extensive experiments show that MaGRoad achieves state-of-the-art performance on our challenging WildRoad benchmark while generalizing well to urban datasets. A streamlined pipeline also yields roughly 2.5x faster inference, improving practical applicability. Together, the dataset and path-centric paradigm provide a stronger foundation for mapping roads in the wild. We release both the dataset and code at https://github.com/xiaofei-guan/MaGRoad.
In bus arrival time prediction, the process of organizing road infrastructure network data into homogeneous entities is known as segmentation. Segmenting a road network is widely recognized as the first and most critical step in developing an arrival time prediction system, particularly for auto-regressive-based approaches. Traditional methods typically employ a uniform segmentation strategy, which fails to account for varying physical constraints along roads, such as road conditions, intersections, and points of interest, thereby limiting prediction efficiency. In this paper, we propose a Reinforcement Learning (RL)-based approach to efficiently and adaptively learn non-uniform road segments for arrival time prediction. Our method decouples the prediction process into two stages: 1) Non-uniform road segments are extracted based on their impact scores using the proposed RL framework; and 2) A linear prediction model is applied to the selected segments to make predictions. This method ensures optimal segment selection while maintaining computational efficiency, offering a significant improvement over traditional uniform approaches. Furthermore, our experimental results suggest that the linear approach can even achieve better performance than more complex methods. Extensive experiments demonstrate the superiority of the proposed method, which not only enhances efficiency but also improves learning performance on large-scale benchmarks. The dataset and the code are publicly accessible at: https://github.com/pangjunbiao/Less-is-More.