Abstract:In order to deploy automated vehicles to the public, it has to be proven that the vehicle can safely and robustly handle traffic in many different scenarios. One important component of automated vehicles is the perception system that captures and processes the environment around the vehicle. Perception systems require large datasets for training their deep neural network. Knowing which parts of the data in these datasets describe a corner case is an advantage during training or testing of the network. These corner cases describe situations that are rare and potentially challenging for the network. We propose a pipeline that converts collective expert knowledge descriptions into the extended KI Absicherung ontology. The ontology is used to describe scenes and scenarios that can be mapped to perception datasets. The corner cases can then be extracted from the datasets. In addition, the pipeline enables the evaluation of the detection networks against the extracted corner cases to measure their performance.
Abstract:Automated vehicles rely heavily on data-driven methods, especially for complex urban environments. Large datasets of real world measurement data in the form of road user trajectories are crucial for several tasks like road user prediction models or scenario-based safety validation. So far, though, this demand is unmet as no public dataset of urban road user trajectories is available in an appropriate size, quality and variety. By contrast, the highway drone dataset (highD) has recently shown that drones are an efficient method for acquiring naturalistic road user trajectories. Compared to driving studies or ground-level infrastructure sensors, one major advantage of using a drone is the possibility to record naturalistic behavior, as road users do not notice measurements taking place. Due to the ideal viewing angle, an entire intersection scenario can be measured with significantly less occlusion than with sensors at ground level. Both the class and the trajectory of each road user can be extracted from the video recordings with high precision using state-of-the-art deep neural networks. Therefore, we propose the creation of a comprehensive, large-scale urban intersection dataset with naturalistic road user behavior using camera-equipped drones as successor of the highD dataset. The resulting dataset contains more than 11500 road users including vehicles, bicyclists and pedestrians at intersections in Germany and is called inD. The dataset consists of 10 hours of measurement data from four intersections and is available online for non-commercial research at: http://www.inD-dataset.com
Abstract:As of February 2016 Facebook allows users to express their experienced emotions about a post by using five so-called `reactions'. This research paper proposes and evaluates alternative methods for predicting these reactions to user posts on public pages of firms/companies (like supermarket chains). For this purpose, we collected posts (and their reactions) from Facebook pages of large supermarket chains and constructed a dataset which is available for other researches. In order to predict the distribution of reactions of a new post, neural network architectures (convolutional and recurrent neural networks) were tested using pretrained word embeddings. Results of the neural networks were improved by introducing a bootstrapping approach for sentiment and emotion mining on the comments for each post. The final model (a combination of neural network and a baseline emotion miner) is able to predict the reaction distribution on Facebook posts with a mean squared error (or misclassification rate) of 0.135.