Abstract:In this paper, we investigate the role of attention heads in Context-aware Machine Translation models for pronoun disambiguation in the English-to-German and English-to-French language directions. We analyze their influence by both observing and modifying the attention scores corresponding to the plausible relations that could impact a pronoun prediction. Our findings reveal that while some heads do attend the relations of interest, not all of them influence the models' ability to disambiguate pronouns. We show that certain heads are underutilized by the models, suggesting that model performance could be improved if only the heads would attend one of the relations more strongly. Furthermore, we fine-tune the most promising heads and observe the increase in pronoun disambiguation accuracy of up to 5 percentage points which demonstrates that the improvements in performance can be solidified into the models' parameters.
Abstract:This paper presents the results of the LegalLens Shared Task, focusing on detecting legal violations within text in the wild across two sub-tasks: LegalLens-NER for identifying legal violation entities and LegalLens-NLI for associating these violations with relevant legal contexts and affected individuals. Using an enhanced LegalLens dataset covering labor, privacy, and consumer protection domains, 38 teams participated in the task. Our analysis reveals that while a mix of approaches was used, the top-performing teams in both tasks consistently relied on fine-tuning pre-trained language models, outperforming legal-specific models and few-shot methods. The top-performing team achieved a 7.11% improvement in NER over the baseline, while NLI saw a more marginal improvement of 5.7%. Despite these gains, the complexity of legal texts leaves room for further advancements.
Abstract:Hybrid search has emerged as an effective strategy to offset the limitations of different matching paradigms, especially in out-of-domain contexts where notable improvements in retrieval quality have been observed. However, existing research predominantly focuses on a limited set of retrieval methods, evaluated in pairs on domain-general datasets exclusively in English. In this work, we study the efficacy of hybrid search across a variety of prominent retrieval models within the unexplored field of law in the French language, assessing both zero-shot and in-domain scenarios. Our findings reveal that in a zero-shot context, fusing different domain-general models consistently enhances performance compared to using a standalone model, regardless of the fusion method. Surprisingly, when models are trained in-domain, we find that fusion generally diminishes performance relative to using the best single system, unless fusing scores with carefully tuned weights. These novel insights, among others, expand the applicability of prior findings across a new field and language, and contribute to a deeper understanding of hybrid search in non-English specialized domains.
Abstract:Simultaneous machine translation aims at solving the task of real-time translation by starting to translate before consuming the full input, which poses challenges in terms of balancing quality and latency of the translation. The wait-$k$ policy offers a solution by starting to translate after consuming $k$ words, where the choice of the number $k$ directly affects the latency and quality. In applications where we seek to keep the choice over latency and quality at inference, the wait-$k$ policy obliges us to train more than one model. In this paper, we address the challenge of building one model that can fulfil multiple latency levels and we achieve this by introducing lightweight adapter modules into the decoder. The adapters are trained to be specialized for different wait-$k$ values and compared to other techniques they offer more flexibility to allow for reaping the benefits of parameter sharing and minimizing interference. Additionally, we show that by combining with an adaptive strategy, we can further improve the results. Experiments on two language directions show that our method outperforms or competes with other strong baselines on most latency values.
Abstract:Content monetization on social media fuels a growing influencer economy. Influencer marketing remains largely undisclosed or inappropriately disclosed on social media. Non-disclosure issues have become a priority for national and supranational authorities worldwide, who are starting to impose increasingly harsher sanctions on them. This paper proposes a transparent methodology for measuring whether and how influencers comply with disclosures based on legal standards. We introduce a novel distinction between disclosures that are legally sufficient (green) and legally insufficient (yellow). We apply this methodology to an original dataset reflecting the content of 150 Dutch influencers publicly registered with the Dutch Media Authority based on recently introduced registration obligations. The dataset consists of 292,315 posts and is multi-language (English and Dutch) and cross-platform (Instagram, YouTube and TikTok). We find that influencer marketing remains generally underdisclosed on social media, and that bigger influencers are not necessarily more compliant with disclosure standards.
Abstract:In the field of psychopathology, Ecological Momentary Assessment (EMA) studies offer rich individual data on psychopathology-relevant variables (e.g., affect, behavior, etc) in real-time. EMA data is collected dynamically, represented as complex multivariate time series (MTS). Such information is crucial for a better understanding of mental disorders at the individual- and group-level. More specifically, clustering individuals in EMA data facilitates uncovering and studying the commonalities as well as variations of groups in the population. Nevertheless, since clustering is an unsupervised task and true EMA grouping is not commonly available, the evaluation of clustering is quite challenging. An important aspect of evaluation is clustering explainability. Thus, this paper proposes an attention-based interpretable framework to identify the important time-points and variables that play primary roles in distinguishing between clusters. A key part of this study is to examine ways to analyze, summarize, and interpret the attention weights as well as evaluate the patterns underlying the important segments of the data that differentiate across clusters. To evaluate the proposed approach, an EMA dataset of 187 individuals grouped in 3 clusters is used for analyzing the derived attention-based importance attributes. More specifically, this analysis provides the distinct characteristics at the cluster-, feature- and individual level. Such clustering explanations could be beneficial for generalizing existing concepts of mental disorders, discovering new insights, and even enhancing our knowledge at an individual level.
Abstract:Recent advancements in language models have demonstrated remarkable improvements in various natural language processing (NLP) tasks such as web navigation. Supervised learning (SL) approaches have achieved impressive performance while utilizing significantly less training data compared to previous methods. However, these SL-based models fall short when compared to reinforcement learning (RL) approaches, which have shown superior results. In this paper, we propose a novel approach that combines SL and RL techniques over the MiniWoB benchmark to leverage the strengths of both methods. We also address a critical limitation in previous models' understanding of HTML content, revealing a tendency to memorize target elements rather than comprehend the underlying structure. To rectify this, we propose methods to enhance true understanding and present a new baseline of results. Our experiments demonstrate that our approach outperforms previous SL methods on certain tasks using less data and narrows the performance gap with RL models, achieving 43.58\% average accuracy in SL and 36.69\% when combined with a multimodal RL approach. This study sets a new direction for future web navigation and offers insights into the limitations and potential of language modeling for computer tasks.
Abstract:In the evolving field of psychopathology, the accurate assessment and forecasting of data derived from Ecological Momentary Assessment (EMA) is crucial. EMA offers contextually-rich psychopathological measurements over time, that practically lead to Multivariate Time Series (MTS) data. Thus, many challenges arise in analysis from the temporal complexities inherent in emotional, behavioral, and contextual EMA data as well as their inter-dependencies. To address both of these aspects, this research investigates the performance of Recurrent and Temporal Graph Neural Networks (GNNs). Overall, GNNs, by incorporating additional information from graphs reflecting the inner relationships between the variables, notably enhance the results by decreasing the Mean Squared Error (MSE) to 0.84 compared to the baseline LSTM model at 1.02. Therefore, the effect of constructing graphs with different characteristics on GNN performance is also explored. Additionally, GNN-learned graphs, which are dynamically refined during the training process, were evaluated. Using such graphs showed a similarly good performance. Thus, graph learning proved also promising for other GNN methods, potentially refining the pre-defined graphs.
Abstract:State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community.
Abstract:Search-based dialog models typically re-encode the dialog history at every turn, incurring high cost. Curved Contrastive Learning, a representation learning method that encodes relative distances between utterances into the embedding space via a bi-encoder, has recently shown promising results for dialog modeling at far superior efficiency. While high efficiency is achieved through independently encoding utterances, this ignores the importance of contextualization. To overcome this issue, this study introduces triple-encoders, which efficiently compute distributed utterance mixtures from these independently encoded utterances through a novel hebbian inspired co-occurrence learning objective without using any weights. Empirically, we find that triple-encoders lead to a substantial improvement over bi-encoders, and even to better zero-shot generalization than single-vector representation models without requiring re-encoding. Our code/model is publicly available.