Abstract:In this paper, we investigate the role of attention heads in Context-aware Machine Translation models for pronoun disambiguation in the English-to-German and English-to-French language directions. We analyze their influence by both observing and modifying the attention scores corresponding to the plausible relations that could impact a pronoun prediction. Our findings reveal that while some heads do attend the relations of interest, not all of them influence the models' ability to disambiguate pronouns. We show that certain heads are underutilized by the models, suggesting that model performance could be improved if only the heads would attend one of the relations more strongly. Furthermore, we fine-tune the most promising heads and observe the increase in pronoun disambiguation accuracy of up to 5 percentage points which demonstrates that the improvements in performance can be solidified into the models' parameters.
Abstract:Simultaneous machine translation aims at solving the task of real-time translation by starting to translate before consuming the full input, which poses challenges in terms of balancing quality and latency of the translation. The wait-$k$ policy offers a solution by starting to translate after consuming $k$ words, where the choice of the number $k$ directly affects the latency and quality. In applications where we seek to keep the choice over latency and quality at inference, the wait-$k$ policy obliges us to train more than one model. In this paper, we address the challenge of building one model that can fulfil multiple latency levels and we achieve this by introducing lightweight adapter modules into the decoder. The adapters are trained to be specialized for different wait-$k$ values and compared to other techniques they offer more flexibility to allow for reaping the benefits of parameter sharing and minimizing interference. Additionally, we show that by combining with an adaptive strategy, we can further improve the results. Experiments on two language directions show that our method outperforms or competes with other strong baselines on most latency values.
Abstract:Context-aware Machine Translation aims to improve translations of sentences by incorporating surrounding sentences as context. Towards this task, two main architectures have been applied, namely single-encoder (based on concatenation) and multi-encoder models. In this study, we show that a special case of multi-encoder architecture, where the latent representation of the source sentence is cached and reused as the context in the next step, achieves higher accuracy on the contrastive datasets (where the models have to rank the correct translation among the provided sentences) and comparable BLEU and COMET scores as the single- and multi-encoder approaches. Furthermore, we investigate the application of Sequence Shortening to the cached representations. We test three pooling-based shortening techniques and introduce two novel methods - Latent Grouping and Latent Selecting, where the network learns to group tokens or selects the tokens to be cached as context. Our experiments show that the two methods achieve competitive BLEU and COMET scores and accuracies on the contrastive datasets to the other tested methods while potentially allowing for higher interpretability and reducing the growth of memory requirements with increased context size.
Abstract:In a number of information retrieval applications (e.g., patent search, literature review, due diligence, etc.), preventing false negatives is more important than preventing false positives. However, approaches designed to reduce review effort (like "technology assisted review") can create false negatives, since they are often based on active learning systems that exclude documents automatically based on user feedback. Therefore, this research proposes a more recall-oriented approach to reducing review effort. More specifically, through iteratively re-ranking the relevance rankings based on user feedback, which is also referred to as relevance feedback. In our proposed method, the relevance rankings are produced by a BERT-based dense-vector search and the relevance feedback is based on cumulatively summing the queried and selected embeddings. Our results show that this method can reduce review effort between 17.85% and 59.04%, compared to a baseline approach (of no feedback), given a fixed recall target