Medical image retrieval is the process of searching for and retrieving medical images based on content similarity or relevance.
In this study, we evaluated four binarization methods. Locality-Sensitive Hashing (LSH), Iterative Quantization (ITQ), Kernel-based Supervised Hashing (KSH), and Supervised Discrete Hashing (SDH) on the ODIR dataset using deep feature embeddings. Experimental results show that SDH achieved the best performance, with an mAP@100 of 0.9184 using only 32-bit codes, outperforming LSH, ITQ, and KSH. Compared with prior studies, our method proved highly competitive: Fang et al. reported 0.7528 (Fundus-iSee, 48 bits) and 0.8856 (ASOCT-Cataract, 48 bits), while Wijesinghe et al. achieved 94.01 (KVASIR, 256 bits). Despite using significantly fewer bits, our SDH-based framework reached retrieval accuracy close to the state-of-the-art. These findings demonstrate that SDH is the most effective approach among those tested, offering a practical balance of accuracy, storage, and efficiency for medical image retrieval and device inventory management.
Generating medical reports from chest X-ray images is a critical and time-consuming task for radiologists, especially in emergencies. To alleviate the stress on radiologists and reduce the risk of misdiagnosis, numerous research efforts have been dedicated to automatic medical report generation in recent years. Most recent studies have developed methods that represent images by utilizing various medical metadata, such as the clinical document history of the current patient and the medical graphs constructed from retrieved reports of other similar patients. However, all existing methods integrate additional metadata representations with visual representations through a simple "Add and LayerNorm" operation, which suffers from the information asymmetry problem due to the distinct distributions between them. In addition, chest X-ray images are usually represented using pre-trained models based on natural domain images, which exhibit an obvious domain gap between general and medical domain images. To this end, we propose a novel approach called Enhanced Image Representations (EIR) for generating accurate chest X-ray reports. We utilize cross-modal transformers to fuse metadata representations with image representations, thereby effectively addressing the information asymmetry problem between them, and we leverage medical domain pre-trained models to encode medical images, effectively bridging the domain gap for image representation. Experimental results on the widely used MIMIC and Open-I datasets demonstrate the effectiveness of our proposed method.
Traditional lecture videos offer flexibility but lack mechanisms for real-time clarification, forcing learners to search externally when confusion arises. Recent advances in large language models and neural avatars provide new opportunities for interactive learning, yet existing systems typically lack lecture awareness, rely on cloud-based services, or fail to integrate retrieval and avatar-delivered explanations in a unified, privacy-preserving pipeline. We present ALIVE, an Avatar-Lecture Interactive Video Engine that transforms passive lecture viewing into a dynamic, real-time learning experience. ALIVE operates fully on local hardware and integrates (1) Avatar-delivered lecture generated through ASR transcription, LLM refinement, and neural talking-head synthesis; (2) A content-aware retrieval mechanism that combines semantic similarity with timestamp alignment to surface contextually relevant lecture segments; and (3) Real-time multimodal interaction, enabling students to pause the lecture, ask questions through text or voice, and receive grounded explanations either as text or as avatar-delivered responses. To maintain responsiveness, ALIVE employs lightweight embedding models, FAISS-based retrieval, and segmented avatar synthesis with progressive preloading. We demonstrate the system on a complete medical imaging course, evaluate its retrieval accuracy, latency characteristics, and user experience, and show that ALIVE provides accurate, content-aware, and engaging real-time support. ALIVE illustrates how multimodal AI-when combined with content-aware retrieval and local deployment-can significantly enhance the pedagogical value of recorded lectures, offering an extensible pathway toward next-generation interactive learning environments.
Diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide, demanding accurate automated diagnostic systems. While general-domain vision-language models like Contrastive Language-Image Pre-Training (CLIP) perform well on natural image tasks, they struggle in medical domain applications, particularly in cross-modal retrieval for ophthalmological images. We propose a novel knowledge-enhanced joint embedding framework that integrates retinal fundus images, clinical text, and structured patient data through a multimodal transformer architecture to address the critical gap in medical image-text alignment. Our approach employs separate encoders for each modality: a Vision Transformer (ViT-B/16) for retinal images, Bio-ClinicalBERT for clinical narratives, and a multilayer perceptron for structured demographic and clinical features. These modalities are fused through a joint transformer with modality-specific embeddings, trained using multiple objectives including contrastive losses between modality pairs, reconstruction losses for images and text, and classification losses for DR severity grading according to ICDR and SDRG schemes. Experimental results on the Brazilian Multilabel Ophthalmological Dataset (BRSET) demonstrate significant improvements over baseline models. Our framework achieves near-perfect text-to-image retrieval performance with Recall@1 of 99.94% compared to fine-tuned CLIP's 1.29%, while maintaining state-of-the-art classification accuracy of 97.05% for SDRG and 97.97% for ICDR. Furthermore, zero-shot evaluation on the unseen DeepEyeNet dataset validates strong generalizability with 93.95% Recall@1 versus 0.22% for fine-tuned CLIP. These results demonstrate that our multimodal training approach effectively captures cross-modal relationships in the medical domain, establishing both superior retrieval capabilities and robust diagnostic performance.




Accurate yet interpretable image-based diagnosis remains a central challenge in medical AI, particularly in settings characterized by limited data, subtle visual cues, and high-stakes clinical decision-making. Most existing vision models rely on purely data-driven learning and produce black-box predictions with limited interpretability and poor cross-domain generalization, hindering their real-world clinical adoption. We present NEURO-GUARD, a novel knowledge-guided vision framework that integrates Vision Transformers (ViTs) with language-driven reasoning to improve performance, transparency, and domain robustness. NEURO-GUARD employs a retrieval-augmented generation (RAG) mechanism for self-verification, in which a large language model (LLM) iteratively generates, evaluates, and refines feature-extraction code for medical images. By grounding this process in clinical guidelines and expert knowledge, the framework progressively enhances feature detection and classification beyond purely data-driven baselines. Extensive experiments on diabetic retinopathy classification across four benchmark datasets APTOS, EyePACS, Messidor-1, and Messidor-2 demonstrate that NEURO-GUARD improves accuracy by 6.2% over a ViT-only baseline (84.69% vs. 78.4%) and achieves a 5% gain in domain generalization. Additional evaluations on MRI-based seizure detection further confirm its cross-domain robustness, consistently outperforming existing methods. Overall, NEURO-GUARD bridges symbolic medical reasoning with subsymbolic visual learning, enabling interpretable, knowledge-aware, and generalizable medical image diagnosis while achieving state-of-the-art performance across multiple datasets.




Large vision-language models like CLIP are increasingly used in medical imaging tasks due to their ability to align images and text without the need for extensive labeled data. This makes them particularly useful for applications like image retrieval, report generation, and classification in clinical settings. A potential issue to this approach is that CLIP-based models often under perform when interpreting negated phrases, which is especially problematic in the context of medical diagnosing. In this study, we evaluate the Stanford AIMI CheXagent model on its ability to correctly retrieve chest X-ray images using prompts with and without negation. The goal of this project is to understand where this model fails and then use it as a base model to improve its retrieval accuracy by fine tuning methods outlined in previous work. Results from this study show improvement in handling of negation in the CLIP model with a slight decrease in accuracy of positive prompt evaluation. Alongside retrieval accuracy, we examined internal model behavior through token attribution, t-SNE projection, and attention-head ablation to better characterize how each fine tuning approach reshaped the text encoders representation of negated clinical language. Through this work, we hope to better understand the internal behavior of CLIP and improve its handling of negation using clinically relevant language for improving its reliability in medical AI devices.




Radiology Report Generation (RRG) is a critical step toward automating healthcare workflows, facilitating accurate patient assessments, and reducing the workload of medical professionals. Despite recent progress in Large Medical Vision-Language Models (Med-VLMs), generating radiology reports that are both visually grounded and clinically accurate remains a significant challenge. Existing approaches often rely on large labeled corpora for pre-training, costly task-specific preference data, or retrieval-based methods. However, these strategies do not adequately mitigate hallucinations arising from poor cross-modal alignment between visual and linguistic representations. To address these limitations, we propose VALOR:Visual Alignment of Medical Vision-Language Models for GrOunded Radiology Report Generation. Our method introduces a reinforcement learning-based post-alignment framework utilizing Group-Relative Proximal Optimization (GRPO). The training proceeds in two stages: (1) improving the Med-VLM with textual rewards to encourage clinically precise terminology, and (2) aligning the vision projection module of the textually grounded model with disease findings, thereby guiding attention toward image re gions most relevant to the diagnostic task. Extensive experiments on multiple benchmarks demonstrate that VALOR substantially improves factual accuracy and visual grounding, achieving significant performance gains over state-of-the-art report generation methods.
Accurate and interpretable image-based diagnosis remains a fundamental challenge in medical AI, particularly under domain shifts and rare-class conditions. Deep learning models often struggle with real-world distribution changes, exhibit bias against infrequent pathologies, and lack the transparency required for deployment in safety-critical clinical environments. We introduce MedXAI (An Explainable Framework for Medical Imaging Classification), a unified expert knowledge based framework that integrates deep vision models with clinician-derived expert knowledge to improve generalization, reduce rare-class bias, and provide human-understandable explanations by localizing the relevant diagnostic features rather than relying on technical post-hoc methods (e.g., Saliency Maps, LIME). We evaluate MedXAI across heterogeneous modalities on two challenging tasks: (i) Seizure Onset Zone localization from resting-state fMRI, and (ii) Diabetic Retinopathy grading. Ex periments on ten multicenter datasets show consistent gains, including a 3% improvement in cross-domain generalization and a 10% improvmnet in F1 score of rare class, substantially outperforming strong deep learning baselines. Ablations confirm that the symbolic components act as effective clinical priors and regularizers, improving robustness under distribution shift. MedXAI delivers clinically aligned explanations while achieving superior in-domain and cross-domain performance, particularly for rare diseases in multimodal medical AI.
Echocardiography is the most widely used imaging modality in cardiology, yet its interpretation remains labor-intensive and inherently multimodal, requiring view recognition, quantitative measurements, qualitative assessments, and guideline-based reasoning. While recent vision-language models (VLMs) have achieved broad success in natural images and certain medical domains, their potential in echocardiography has been limited by the lack of large-scale, clinically grounded image-text datasets and the absence of measurement-based reasoning central to echo interpretation. We introduce EchoGround-MIMIC, the first measurement-grounded multimodal echocardiography dataset, comprising 19,065 image-text pairs from 1,572 patients with standardized views, structured measurements, measurement-grounded captions, and guideline-derived disease labels. Building on this resource, we propose EchoVLM, a vision-language model that incorporates two novel pretraining objectives: (i) a view-informed contrastive loss that encodes the view-dependent structure of echocardiographic imaging, and (ii) a negation-aware contrastive loss that distinguishes clinically critical negative from positive findings. Across five types of clinical applications with 36 tasks spanning multimodal disease classification, image-text retrieval, view classification, chamber segmentation, and landmark detection, EchoVLM achieves state-of-the-art performance (86.5% AUC in zero-shot disease classification and 95.1% accuracy in view classification). We demonstrate that clinically grounded multimodal pretraining yields transferable visual representations and establish EchoVLM as a foundation model for end-to-end echocardiography interpretation. We will release EchoGround-MIMIC and the data curation code, enabling reproducibility and further research in multimodal echocardiography interpretation.
According to the World Health Organization, breast cancer claimed the lives of approximately 685,000 women in 2020. Early diagnosis and accurate clinical decision making are critical in reducing this global burden. In this study, we propose THIR, a novel Content-Based Medical Image Retrieval (CBMIR) framework that leverages topological data analysis specifically, Betti numbers derived from persistent homology to characterize and retrieve histopathological images based on their intrinsic structural patterns. Unlike conventional deep learning approaches that rely on extensive training, annotated datasets, and powerful GPU resources, THIR operates entirely without supervision. It extracts topological fingerprints directly from RGB histopathological images using cubical persistence, encoding the evolution of loops as compact, interpretable feature vectors. The similarity retrieval is then performed by computing the distances between these topological descriptors, efficiently returning the top-K most relevant matches. Extensive experiments on the BreaKHis dataset demonstrate that THIR outperforms state of the art supervised and unsupervised methods. It processes the entire dataset in under 20 minutes on a standard CPU, offering a fast, scalable, and training free solution for clinical image retrieval.