Abstract:Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .
Abstract:The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-stage approach named Self-Supervised State Reconstruction-Primed Riemannian Dynamics (EEG-ReMinD) , which mitigates reliance on supervised learning and integrates inherent geometric features. This approach efficiently handles EEG data corruptions and reduces the dependency on labels. EEG-ReMinD utilizes self-supervised and geometric learning techniques, along with an attention mechanism, to analyze the temporal dynamics of EEG features within the framework of Riemannian geometry, referred to as Riemannian dynamics. Comparative analyses on both intact and corrupted datasets from two different neurodegenerative disorders underscore the enhanced performance of EEG-ReMinD.
Abstract:Non-ideal measurement computed tomography (NICT), which sacrifices optimal imaging standards for new advantages in CT imaging, is expanding the clinical application scope of CT images. However, with the reduction of imaging standards, the image quality has also been reduced, extremely limiting the clinical acceptability. Although numerous studies have demonstrated the feasibility of deep learning for the NICT enhancement in specific scenarios, their high data cost and limited generalizability have become large obstacles. The recent research on the foundation model has brought new opportunities for building a universal NICT enhancement model - bridging the image quality degradation with minimal data cost. However, owing to the challenges in the collection of large pre-training datasets and the compatibility of data variation, no success has been reported. In this paper, we propose a multi-scale integrated Transformer AMPlifier (TAMP), the first imaging foundation model for universal NICT enhancement. It has been pre-trained on a large-scale physical-driven simulation dataset with 3.6 million NICT-ICT image pairs, and is able to directly generalize to the NICT enhancement tasks with various non-ideal settings and body regions. Via the adaptation with few data, it can further achieve professional performance in real-world specific scenarios. Our extensive experiments have demonstrated that the proposed TAMP has significant potential for promoting the exploration and application of NICT and serving a wider range of medical scenarios.
Abstract:Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions. However, existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise. To address this issue, we propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics, thus enhancing the quality of the representations and the robustness of the model. To fully exploit the rich semantic information in textual knowledge, we propose a semantic-guided fusion module. By evaluating the correlations between different modalities, this module facilitates cross-modal interactions gated by modality-invariant representations. Furthermore, we introduce a modality discriminator to disentangle modality-invariant and modality-specific subspaces. Experimental results on two public datasets demonstrate the superiority of our model. Our code is available at https://github.com/X-G-Y/SATI.
Abstract:Multimodal sentiment recognition aims to learn representations from different modalities to identify human emotions. However, previous works does not suppresses the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise. To address this issue, we propose the Temporal-invariant learning, which minimizes the distributional differences between time steps to effectively capture smoother time series patterns, thereby enhancing the quality of the representations and robustness of the model. To fully exploit the rich semantic information in textual knowledge, we propose a Text-Driven Fusion Module (TDFM). To guide cross-modal interactions, TDFM evaluates the correlations between different modality through modality-invariant representations. Furthermore, we introduce a modality discriminator to disentangle modality-invariant and modality-specific subspaces. Experimental results on two public datasets demonstrate the superiority of our model.
Abstract:Traditional approaches to estimating beta in finance often involve rigid assumptions and fail to adequately capture beta dynamics, limiting their effectiveness in use cases like hedging. To address these limitations, we have developed a novel method using neural networks called NeuralBeta, which is capable of handling both univariate and multivariate scenarios and tracking the dynamic behavior of beta. To address the issue of interpretability, we introduce a new output layer inspired by regularized weighted linear regression, which provides transparency into the model's decision-making process. We conducted extensive experiments on both synthetic and market data, demonstrating NeuralBeta's superior performance compared to benchmark methods across various scenarios, especially instances where beta is highly time-varying, e.g., during regime shifts in the market. This model not only represents an advancement in the field of beta estimation, but also shows potential for applications in other financial contexts that assume linear relationships.
Abstract:As the number of IoT devices increases, security concerns become more prominent. The impact of threats can be minimized by deploying Network Intrusion Detection System (NIDS) by monitoring network traffic, detecting and discovering intrusions, and issuing security alerts promptly. Most intrusion detection research in recent years has been directed towards the pair of traffic itself without considering the interrelationships among them, thus limiting the monitoring of complex IoT network attack events. Besides, anomalous traffic in real networks accounts for only a small fraction, which leads to a severe imbalance problem in the dataset that makes algorithmic learning and prediction extremely difficult. In this paper, we propose an EG-ConMix method based on E-GraphSAGE, incorporating a data augmentation module to fix the problem of data imbalance. In addition, we incorporate contrastive learning to discern the difference between normal and malicious traffic samples, facilitating the extraction of key features. Extensive experiments on two publicly available datasets demonstrate the superior intrusion detection performance of EG-ConMix compared to state-of-the-art methods. Remarkably, it exhibits significant advantages in terms of training speed and accuracy for large-scale graphs.
Abstract:Generating fake data is an essential dimension of modern software testing, as demonstrated by the number and significance of data faking libraries. Yet, developers of faking libraries cannot keep up with the wide range of data to be generated for different natural languages and domains. In this paper, we assess the ability of generative AI for generating test data in different domains. We design three types of prompts for Large Language Models (LLMs), which perform test data generation tasks at different levels of integrability: 1) raw test data generation, 2) synthesizing programs in a specific language that generate useful test data, and 3) producing programs that use state-of-the-art faker libraries. We evaluate our approach by prompting LLMs to generate test data for 11 domains. The results show that LLMs can successfully generate realistic test data generators in a wide range of domains at all three levels of integrability.
Abstract:In continual learning, a learner has to keep learning from the data over its whole life time. A key issue is to decide what knowledge to keep and what knowledge to let go. In a neural network, this can be implemented by using a step-size vector to scale how much gradient samples change network weights. Common algorithms, like RMSProp and Adam, use heuristics, specifically normalization, to adapt this step-size vector. In this paper, we show that those heuristics ignore the effect of their adaptation on the overall objective function, for example by moving the step-size vector away from better step-size vectors. On the other hand, stochastic meta-gradient descent algorithms, like IDBD (Sutton, 1992), explicitly optimize the step-size vector with respect to the overall objective function. On simple problems, we show that IDBD is able to consistently improve step-size vectors, where RMSProp and Adam do not. We explain the differences between the two approaches and their respective limitations. We conclude by suggesting that combining both approaches could be a promising future direction to improve the performance of neural networks in continual learning.
Abstract:This paper introduces a novel approach to synthesize texture to dress up a given 3D object, given a text prompt. Based on the pretrained text-to-image (T2I) diffusion model, existing methods usually employ a project-and-inpaint approach, in which a view of the given object is first generated and warped to another view for inpainting. But it tends to generate inconsistent texture due to the asynchronous diffusion of multiple views. We believe such asynchronous diffusion and insufficient information sharing among views are the root causes of the inconsistent artifact. In this paper, we propose a synchronized multi-view diffusion approach that allows the diffusion processes from different views to reach a consensus of the generated content early in the process, and hence ensures the texture consistency. To synchronize the diffusion, we share the denoised content among different views in each denoising step, specifically blending the latent content in the texture domain from views with overlap. Our method demonstrates superior performance in generating consistent, seamless, highly detailed textures, comparing to state-of-the-art methods.