Abstract:The rapid advancement of large-scale vision-language models has showcased remarkable capabilities across various tasks. However, the lack of extensive and high-quality image-text data in medicine has greatly hindered the development of large-scale medical vision-language models. In this work, we present a diagnosis-guided bootstrapping strategy that exploits both image and label information to construct vision-language datasets. Based on the constructed dataset, we developed MedDr, a generalist foundation model for healthcare capable of handling diverse medical data modalities, including radiology, pathology, dermatology, retinography, and endoscopy. Moreover, during inference, we propose a simple but effective retrieval-augmented medical diagnosis strategy, which enhances the model's generalization ability. Extensive experiments on visual question answering, medical report generation, and medical image diagnosis demonstrate the superiority of our method.
Abstract:Foundation model, which is pre-trained on broad data and is able to adapt to a wide range of tasks, is advancing healthcare. It promotes the development of healthcare artificial intelligence (AI) models, breaking the contradiction between limited AI models and diverse healthcare practices. Much more widespread healthcare scenarios will benefit from the development of a healthcare foundation model (HFM), improving their advanced intelligent healthcare services. Despite the impending widespread deployment of HFMs, there is currently a lack of clear understanding about how they work in the healthcare field, their current challenges, and where they are headed in the future. To answer these questions, a comprehensive and deep survey of the challenges, opportunities, and future directions of HFMs is presented in this survey. It first conducted a comprehensive overview of the HFM including the methods, data, and applications for a quick grasp of the current progress. Then, it made an in-depth exploration of the challenges present in data, algorithms, and computing infrastructures for constructing and widespread application of foundation models in healthcare. This survey also identifies emerging and promising directions in this field for future development. We believe that this survey will enhance the community's comprehension of the current progress of HFM and serve as a valuable source of guidance for future development in this field. The latest HFM papers and related resources are maintained on our website: https://github.com/YutingHe-list/Awesome-Foundation-Models-for-Advancing-Healthcare.
Abstract:Multi-modal Large Language Models (MLLMs) have demonstrated their ability to perceive objects in still images, but their application in video-related tasks, such as object tracking, remains understudied. This lack of exploration is primarily due to two key challenges. Firstly, extensive pretraining on large-scale video datasets is required to equip MLLMs with the capability to perceive objects across multiple frames and understand inter-frame relationships. Secondly, processing a large number of frames within the context window of Large Language Models (LLMs) can impose a significant computational burden. To address the first challenge, we introduce ElysiumTrack-1M, a large-scale video dataset supported for three tasks: Single Object Tracking (SOT), Referring Single Object Tracking (RSOT), and Video Referring Expression Generation (Video-REG). ElysiumTrack-1M contains 1.27 million annotated video frames with corresponding object boxes and descriptions. Leveraging this dataset, we conduct training of MLLMs and propose a token-compression model T-Selector to tackle the second challenge. Our proposed approach, Elysium: Exploring Object-level Perception in Videos via MLLM, is an end-to-end trainable MLLM that attempts to conduct object-level tasks in videos without requiring any additional plug-in or expert models. All codes and datasets are available at https://github.com/Hon-Wong/Elysium.
Abstract:Mixed initiative serves as one of the key factors in controlling conversation directions. For a speaker, responding passively or leading proactively would result in rather different responses. However, most dialogue systems focus on training a holistic response generation model without any distinction among different initiatives. It leads to the cross-contamination problem, where the model confuses different initiatives and generates inappropriate responses. Moreover, obtaining plenty of human annotations for initiative labels can be expensive. To address this issue, we propose a general mix-Initiative Dynamic Prefix Tuning framework (IDPT) to decouple different initiatives from the generation model, which learns initiative-aware prefixes in both supervised and unsupervised settings. Specifically, IDPT decouples initiative factors into different prefix parameters and uses the attention mechanism to adjust the selection of initiatives in guiding generation dynamically. The prefix parameters can be tuned towards accurate initiative prediction as well as mix-initiative response generation. Extensive experiments on two public dialogue datasets show that the proposed IDPT outperforms previous baselines on both automatic metrics and human evaluations. It also manages to generate appropriate responses with manipulated initiatives.
Abstract:Scientific machine reading comprehension (SMRC) aims to understand scientific texts through interactions with humans by given questions. As far as we know, there is only one dataset focused on exploring full-text scientific machine reading comprehension. However, the dataset has ignored the fact that different readers may have different levels of understanding of the text, and only includes single-perspective question-answer pairs, leading to a lack of consideration of different perspectives. To tackle the above problem, we propose a novel multi-perspective SMRC dataset, called SciMRC, which includes perspectives from beginners, students and experts. Our proposed SciMRC is constructed from 741 scientific papers and 6,057 question-answer pairs. Each perspective of beginners, students and experts contains 3,306, 1,800 and 951 QA pairs, respectively. The extensive experiments on SciMRC by utilizing pre-trained models suggest the importance of considering perspectives of SMRC, and demonstrate its challenging nature for machine comprehension.
Abstract:Annotating long-document question answering (long-document QA) pairs is time-consuming and expensive. To alleviate the problem, it might be possible to generate long-document QA pairs via unsupervised question answering (UQA) methods. However, existing UQA tasks are based on short documents, and can hardly incorporate long-range information. To tackle the problem, we propose a new task, named unsupervised long-document question answering (ULQA), aiming to generate high-quality long-document QA instances in an unsupervised manner. Besides, we propose AttenWalker, a novel unsupervised method to aggregate and generate answers with long-range dependency so as to construct long-document QA pairs. Specifically, AttenWalker is composed of three modules, i.e., span collector, span linker and answer aggregator. Firstly, the span collector takes advantage of constituent parsing and reconstruction loss to select informative candidate spans for constructing answers. Secondly, by going through the attention graph of a pre-trained long-document model, potentially interrelated text spans (that might be far apart) could be linked together via an attention-walking algorithm. Thirdly, in the answer aggregator, linked spans are aggregated into the final answer via the mask-filling ability of a pre-trained model. Extensive experiments show that AttenWalker outperforms previous methods on Qasper and NarrativeQA. In addition, AttenWalker also shows strong performance in the few-shot learning setting.
Abstract:Long document question answering is a challenging task due to its demands for complex reasoning over long text. Previous works usually take long documents as non-structured flat texts or only consider the local structure in long documents. However, these methods usually ignore the global structure of the long document, which is essential for long-range understanding. To tackle this problem, we propose Compressive Graph Selector Network (CGSN) to capture the global structure in a compressive and iterative manner. Specifically, the proposed model consists of three modules: local graph network, global graph network and evidence memory network. Firstly, the local graph network builds the graph structure of the chunked segment in token, sentence, paragraph and segment levels to capture the short-term dependency of the text. Secondly, the global graph network selectively receives the information of each level from the local graph, compresses them into the global graph nodes and applies graph attention into the global graph nodes to build the long-range reasoning over the entire text in an iterative way. Thirdly, the evidence memory network is designed to alleviate the redundancy problem in the evidence selection via saving the selected result in the previous steps. Extensive experiments show that the proposed model outperforms previous methods on two datasets.
Abstract:Unsupervised question answering is an attractive task due to its independence on labeled data. Previous works usually make use of heuristic rules as well as pre-trained models to construct data and train QA models. However, most of these works regard named entity (NE) as the only answer type, which ignores the high diversity of answers in the real world. To tackle this problem, we propose a novel unsupervised method by diversifying answers, named DiverseQA. Specifically, the proposed method is composed of three modules: data construction, data augmentation and denoising filter. Firstly, the data construction module extends the extracted named entity into a longer sentence constituent as the new answer span to construct a QA dataset with diverse answers. Secondly, the data augmentation module adopts an answer-type dependent data augmentation process via adversarial training in the embedding level. Thirdly, the denoising filter module is designed to alleviate the noise in the constructed data. Extensive experiments show that the proposed method outperforms previous unsupervised models on five benchmark datasets, including SQuADv1.1, NewsQA, TriviaQA, BioASQ, and DuoRC. Besides, the proposed method shows strong performance in the few-shot learning setting.
Abstract:Second language acquisition (SLA) modeling is to predict whether second language learners could correctly answer the questions according to what they have learned. It is a fundamental building block of the personalized learning system and has attracted more and more attention recently. However, as far as we know, almost all existing methods cannot work well in low-resource scenarios because lacking of training data. Fortunately, there are some latent common patterns among different language-learning tasks, which gives us an opportunity to solve the low-resource SLA modeling problem. Inspired by this idea, in this paper, we propose a novel SLA modeling method, which learns the latent common patterns among different language-learning datasets by multi-task learning and are further applied to improving the prediction performance in low-resource scenarios. Extensive experiments show that the proposed method performs much better than the state-of-the-art baselines in the low-resource scenario. Meanwhile, it also obtains improvement slightly in the non-low-resource scenario.