Abstract:Large Language Models (LLMs) are typically evaluated for safety under single-shot or low-budget adversarial prompting, which underestimates real-world risk. In practice, attackers can exploit large-scale parallel sampling to repeatedly probe a model until a harmful response is produced. While recent work shows that attack success increases with repeated sampling, principled methods for predicting large-scale adversarial risk remain limited. We propose a scaling-aware Best-of-N estimation of risk, SABER, for modeling jailbreak vulnerability under Best-of-N sampling. We model sample-level success probabilities using a Beta distribution, the conjugate prior of the Bernoulli distribution, and derive an analytic scaling law that enables reliable extrapolation of large-N attack success rates from small-budget measurements. Using only n=100 samples, our anchored estimator predicts ASR@1000 with a mean absolute error of 1.66, compared to 12.04 for the baseline, which is an 86.2% reduction in estimation error. Our results reveal heterogeneous risk scaling profiles and show that models appearing robust under standard evaluation can experience rapid nonlinear risk amplification under parallel adversarial pressure. This work provides a low-cost, scalable methodology for realistic LLM safety assessment. We will release our code and evaluation scripts upon publication to future research.
Abstract:Sparse superimposed coding (SSC) has emerged as a promising technique for short-packet transmission in ultra-reliable low-latency communication scenarios. However, conventional SSC schemes often suffer from high encoding and decoding complexity due to the use of dense codebook matrices. In this paper, we propose a low-complexity SSC scheme by designing a sparse codebook structure, where each codeword contains only a small number of non-zero elements. The decoding is performed using the traditional multipath matching pursuit algorithm, and the overall complexity is significantly reduced by exploiting the sparsity of the codebook. Simulation results show that the proposed scheme achieves a favorable trade-off between BLER performance and computational complexity, and exhibits strong robustness across different transmission block lengths.
Abstract:Sparse vector coding (SVC) is a promising short-packet transmission method for ultra reliable low latency communication (URLLC) in next generation communication systems. In this paper, a dual-mapping SVC (DM-SVC) based short packet transmission scheme is proposed to further enhance the transmission performance of SVC. The core idea behind the proposed scheme lies in mapping the transmitted information bits onto sparse vectors via block and single-element sparse mappings. The block sparse mapping pattern is able to concentrate the transmit power in a small number of non-zero blocks thus improving the decoding accuracy, while the single-element sparse mapping pattern ensures that the code length does not increase dramatically with the number of transmitted information bits. At the receiver, a two-stage decoding algorithm is proposed to sequentially identify non-zero block indexes and single-element non-zero indexes. Extensive simulation results verify that proposed DM-SVC scheme outperforms the existing SVC schemes in terms of block error rate and spectral efficiency.
Abstract:Sparse vector transmission (SVT) is a promising candidate technology for achieving ultra-reliable low-latency communication (URLLC). In this paper, a hierarchical SVT scheme is proposed for multi-user URLLC scenarios. The hierarchical SVT scheme partitions the transmitted bits into common and private parts. The common information is conveyed by the indices of non-zero sections in a sparse vector, while each user's private information is embedded into non-zero blocks with specific block lengths. At the receiver, the common bits are first recovered from the detected non-zero sections, followed by user-specific private bits decoding based on the corresponding non-zero block indices. Simulation results show the proposed scheme outperforms state-of-the-art SVT schemes in terms of block error rate.




Abstract:Recent large language models (LLMs) have excelled across a wide range of tasks, but their use in high-stakes and compute-limited settings has intensified the demand for interpretability and efficiency. We address this need by proposing Induction-head ngram models (Induction-Gram), a method that builds an efficient, interpretable LM by bolstering modern ngram models with a hand-engineered "induction head". This induction head uses a custom neural similarity metric to efficiently search the model's input context for potential next-word completions. This process enables Induction-Gram to provide ngram-level grounding for each generated token. Moreover, experiments show that this simple method significantly improves next-word prediction over baseline interpretable models (up to 26%p) and can be used to speed up LLM inference for large models through speculative decoding. We further study Induction-Gram in a natural-language neuroscience setting, where the goal is to predict the next fMRI response in a sequence. It again provides a significant improvement over interpretable models (20% relative increase in the correlation of predicted fMRI responses), potentially enabling deeper scientific investigation of language selectivity in the brain. The code is available at https://github.com/ejkim47/induction-gram.




Abstract:Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM




Abstract:Power system operators must ensure that dispatch decisions remain feasible in case of grid outages or contingencies to prevent cascading failures and ensure reliable operation. However, checking the feasibility of all $N - k$ contingencies -- every possible simultaneous failure of $k$ grid components -- is computationally intractable for even small $k$, requiring system operators to resort to heuristic screening methods. Because of the increase in uncertainty and changes in system behaviors, heuristic lists might not include all relevant contingencies, generating false negatives in which unsafe scenarios are misclassified as safe. In this work, we propose to use input-convex neural networks (ICNNs) for contingency screening. We show that ICNN reliability can be determined by solving a convex optimization problem, and by scaling model weights using this problem as a differentiable optimization layer during training, we can learn an ICNN classifier that is both data-driven and has provably guaranteed reliability. Namely, our method can ensure a zero false negative rate. We empirically validate this methodology in a case study on the IEEE 39-bus test network, observing that it yields substantial (10-20x) speedups while having excellent classification accuracy.




Abstract:Binary code summarization, while invaluable for understanding code semantics, is challenging due to its labor-intensive nature. This study delves into the potential of large language models (LLMs) for binary code comprehension. To this end, we present BinSum, a comprehensive benchmark and dataset of over 557K binary functions and introduce a novel method for prompt synthesis and optimization. To more accurately gauge LLM performance, we also propose a new semantic similarity metric that surpasses traditional exact-match approaches. Our extensive evaluation of prominent LLMs, including ChatGPT, GPT-4, Llama 2, and Code Llama, reveals 10 pivotal insights. This evaluation generates 4 billion inference tokens, incurred a total expense of 11,418 US dollars and 873 NVIDIA A100 GPU hours. Our findings highlight both the transformative potential of LLMs in this field and the challenges yet to be overcome.


Abstract:The emergence of human-like abilities of AI systems for content generation in domains such as text, audio, and vision has prompted the development of classifiers to determine whether content originated from a human or a machine. Implicit in these efforts is an assumption that the generation properties of a human are different from that of the machine. In this work, we provide a framework in the language of statistical pattern recognition that quantifies the difference between the distributions of human and machine-generated content conditioned on an evaluation context. We describe current methods in the context of the framework and demonstrate how to use the framework to evaluate the progression of generative models towards human-like capabilities, among many axes of analysis.




Abstract:We propose a class of models based on Fisher's Linear Discriminant (FLD) in the context of domain adaptation. The class is the convex combination of two hypotheses: i) an average hypothesis representing previously seen source tasks and ii) a hypothesis trained on a new target task. For a particular generative setting we derive the optimal convex combination of the two models under 0-1 loss, propose a computable approximation, and study the effect of various parameter settings on the relative risks between the optimal hypothesis, hypothesis i), and hypothesis ii). We demonstrate the effectiveness of the proposed optimal classifier in the context of EEG- and ECG-based classification settings and argue that the optimal classifier can be computed without access to direct information from any of the individual source tasks. We conclude by discussing further applications, limitations, and possible future directions.