Abstract:In time-series analysis, many recent works seek to provide a unified view and representation for time-series across multiple domains, leading to the development of foundation models for time-series data. Despite diverse modeling techniques, existing models are black boxes and fail to provide insights and explanations about their representations. In this paper, we present VQShape, a pre-trained, generalizable, and interpretable model for time-series representation learning and classification. By introducing a novel representation for time-series data, we forge a connection between the latent space of VQShape and shape-level features. Using vector quantization, we show that time-series from different domains can be described using a unified set of low-dimensional codes, where each code can be represented as an abstracted shape in the time domain. On classification tasks, we show that the representations of VQShape can be utilized to build interpretable classifiers, achieving comparable performance to specialist models. Additionally, in zero-shot learning, VQShape and its codebook can generalize to previously unseen datasets and domains that are not included in the pre-training process. The code and pre-trained weights are available at https://github.com/YunshiWen/VQShape.
Abstract:Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
Abstract:Concept Bottleneck Models (CBMs) provide interpretable prediction by introducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-understandable concepts to explain models' decision. Recent works proposed to utilize Large Language Models (LLMs) and pre-trained Vision-Language Models (VLMs) to automate the training of CBMs, making it more scalable and automated. However, existing approaches still fall short in two aspects: First, the concepts predicted by CBL often mismatch the input image, raising doubts about the faithfulness of interpretation. Second, it has been shown that concept values encode unintended information: even a set of random concepts could achieve comparable test accuracy to state-of-the-art CBMs. To address these critical limitations, in this work, we propose a novel framework called Vision-Language-Guided Concept Bottleneck Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted performance. Our method leverages off-the-shelf open-domain grounded object detectors to provide visually grounded concept annotation, which largely enhances the faithfulness of concept prediction while further improving the model performance. In addition, we propose a new metric called Number of Effective Concepts (NEC) to control the information leakage and provide better interpretability. Extensive evaluations across five standard benchmarks show that our method, VLG-CBM, outperforms existing methods by at least 4.27% and up to 51.09% on accuracy at NEC=5, and by at least 0.45% and up to 29.78% on average accuracy across different NECs, while preserves both faithfulness and interpretability of the learned concepts as demonstrated in extensive experiments.
Abstract:We introduce the Concept Bottleneck Large Language Model (CB-LLM), a pioneering approach to creating inherently interpretable Large Language Models (LLMs). Unlike traditional black-box LLMs that rely on post-hoc interpretation methods with limited neuron function insights, CB-LLM sets a new standard with its built-in interpretability, scalability, and ability to provide clear, accurate explanations. This innovation not only advances transparency in language models but also enhances their effectiveness. Our unique Automatic Concept Correction (ACC) strategy successfully narrows the performance gap with conventional black-box LLMs, positioning CB-LLM as a model that combines the high accuracy of traditional LLMs with the added benefit of clear interpretability -- a feature markedly absent in existing LLMs.
Abstract:Neuron-level interpretations aim to explain network behaviors and properties by investigating neurons responsive to specific perceptual or structural input patterns. Although there is emerging work in the vision and language domains, none is explored for acoustic models. To bridge the gap, we introduce $\textit{AND}$, the first $\textbf{A}$udio $\textbf{N}$etwork $\textbf{D}$issection framework that automatically establishes natural language explanations of acoustic neurons based on highly-responsive audio. $\textit{AND}$ features the use of LLMs to summarize mutual acoustic features and identities among audio. Extensive experiments are conducted to verify $\textit{AND}$'s precise and informative descriptions. In addition, we demonstrate a potential use of $\textit{AND}$ for audio machine unlearning by conducting concept-specific pruning based on the generated descriptions. Finally, we highlight two acoustic model behaviors with analysis by $\textit{AND}$: (i) models discriminate audio with a combination of basic acoustic features rather than high-level abstract concepts; (ii) training strategies affect model behaviors and neuron interpretability -- supervised training guides neurons to gradually narrow their attention, while self-supervised learning encourages neurons to be polysemantic for exploring high-level features.
Abstract:Robustness remains a paramount concern in deep reinforcement learning (DRL), with randomized smoothing emerging as a key technique for enhancing this attribute. However, a notable gap exists in the performance of current smoothed DRL agents, often characterized by significantly low clean rewards and weak robustness. In response to this challenge, our study introduces innovative algorithms aimed at training effective smoothed robust DRL agents. We propose S-DQN and S-PPO, novel approaches that demonstrate remarkable improvements in clean rewards, empirical robustness, and robustness guarantee across standard RL benchmarks. Notably, our S-DQN and S-PPO agents not only significantly outperform existing smoothed agents by an average factor of $2.16\times$ under the strongest attack, but also surpass previous robustly-trained agents by an average factor of $2.13\times$. This represents a significant leap forward in the field. Furthermore, we introduce Smoothed Attack, which is $1.89\times$ more effective in decreasing the rewards of smoothed agents than existing adversarial attacks.
Abstract:In recent years many methods have been developed to understand the internal workings of neural networks, often by describing the function of individual neurons in the model. However, these methods typically only focus on explaining the very highest activations of a neuron. In this paper we show this is not sufficient, and that the highest activation range is only responsible for a very small percentage of the neuron's causal effect. In addition, inputs causing lower activations are often very different and can't be reliably predicted by only looking at high activations. We propose that neurons should instead be understood as a linear combination of concepts, and develop an efficient method for producing these linear explanations. In addition, we show how to automatically evaluate description quality using simulation, i.e. predicting neuron activations on unseen inputs in vision setting.
Abstract:Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to $4.36\times$, $5.46\times$, and $16.9\times$ respectively and provide practical robustness guarantee. Our codes are available at https://github.com/Trustworthy-ML-Lab/Provably-Robust-Conformal-Prediction.
Abstract:In this paper, we propose Describe-and-Dissect (DnD), a novel method to describe the roles of hidden neurons in vision networks. DnD utilizes recent advancements in multimodal deep learning to produce complex natural language descriptions, without the need for labeled training data or a predefined set of concepts to choose from. Additionally, DnD is training-free, meaning we don't train any new models and can easily leverage more capable general purpose models in the future. We have conducted extensive qualitative and quantitative analysis to show that DnD outperforms prior work by providing higher quality neuron descriptions. Specifically, our method on average provides the highest quality labels and is more than 2 times as likely to be selected as the best explanation for a neuron than the best baseline.
Abstract:Neural networks are powerful tools in various applications, and quantifying their uncertainty is crucial for reliable decision-making. In the deep learning field, the uncertainties are usually categorized into aleatoric (data) and epistemic (model) uncertainty. In this paper, we point out that the existing popular variance attenuation method highly overestimates aleatoric uncertainty. To address this issue, we propose a new estimation method by actively de-noising the observed data. By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.