Abstract:There has been a growing interest in capturing and maintaining causal relationships in Neural Network (NN) models in recent years. We study causal approaches to estimate and maintain input-output attributions in NN models in this work. In particular, existing efforts in this direction assume independence among input variables (by virtue of the NN architecture), and hence study only direct causal effects. Viewing an NN as a structural causal model (SCM), we instead focus on going beyond direct effects, introduce edges among input features, and provide a simple yet effective methodology to capture and maintain direct and indirect causal effects while training an NN model. We also propose effective approximation strategies to quantify causal attributions in high dimensional data. Our wide range of experiments on synthetic and real-world datasets show that the proposed ante-hoc method learns causal attributions for both direct and indirect causal effects close to the ground truth effects.
Abstract:As transfer learning techniques are increasingly used to transfer knowledge from the source model to the target task, it becomes important to quantify which source models are suitable for a given target task without performing computationally expensive fine tuning. In this work, we propose HASTE (HArd Subset TransfErability), a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data. By leveraging the internal and output representations of model, we introduce two techniques, one class agnostic and another class specific, to identify harder subsets and show that HASTE can be used with any existing transferability metric to improve their reliability. We further analyze the relation between HASTE and the optimal average log likelihood as well as negative conditional entropy and empirically validate our theoretical bounds. Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
Abstract:Conditional image generation has paved the way for several breakthroughs in image editing, generating stock photos and 3-D object generation. This continues to be a significant area of interest with the rise of new state-of-the-art methods that are based on diffusion models. However, diffusion models provide very little control over the generated image, which led to subsequent works exploring techniques like classifier guidance, that provides a way to trade off diversity with fidelity. In this work, we explore techniques to condition diffusion models with carefully crafted input noise artifacts. This allows generation of images conditioned on semantic attributes. This is different from existing approaches that input Gaussian noise and further introduce conditioning at the diffusion model's inference step. Our experiments over several examples and conditional settings show the potential of our approach.
Abstract:The visual world naturally exhibits an imbalance in the number of object or scene instances resulting in a \emph{long-tailed distribution}. This imbalance poses significant challenges for classification models based on deep learning. Oversampling instances of the tail classes attempts to solve this imbalance. However, the limited visual diversity results in a network with poor representation ability. A simple counter to this is decoupling the representation and classifier networks and using oversampling only to train the classifier. In this paper, instead of repeatedly re-sampling the same image (and thereby features), we explore a direction that attempts to generate meaningful features by estimating the tail category's distribution. Inspired by ideas from recent work on few-shot learning, we create calibrated distributions to sample additional features that are subsequently used to train the classifier. Through several experiments on the CIFAR-100-LT (long-tail) dataset with varying imbalance factors and on mini-ImageNet-LT (long-tail), we show the efficacy of our approach and establish a new state-of-the-art. We also present a qualitative analysis of generated features using t-SNE visualizations and analyze the nearest neighbors used to calibrate the tail class distributions. Our code is available at https://github.com/rahulvigneswaran/TailCalibX.
Abstract:This paper proposes a network architecture to perform variable length semantic video generation using captions. We adopt a new perspective towards video generation where we allow the captions to be combined with the long-term and short-term dependencies between video frames and thus generate a video in an incremental manner. Our experiments demonstrate our network architecture's ability to distinguish between objects, actions and interactions in a video and combine them to generate videos for unseen captions. The network also exhibits the capability to perform spatio-temporal style transfer when asked to generate videos for a sequence of captions. We also show that the network's ability to learn a latent representation allows it generate videos in an unsupervised manner and perform other tasks such as action recognition. (Accepted in International Conference in Computer Vision (ICCV) 2017)
Abstract:This paper introduces a novel approach for generating videos called Synchronized Deep Recurrent Attentive Writer (Sync-DRAW). Sync-DRAW can also perform text-to-video generation which, to the best of our knowledge, makes it the first approach of its kind. It combines a Variational Autoencoder~(VAE) with a Recurrent Attention Mechanism in a novel manner to create a temporally dependent sequence of frames that are gradually formed over time. The recurrent attention mechanism in Sync-DRAW attends to each individual frame of the video in sychronization, while the VAE learns a latent distribution for the entire video at the global level. Our experiments with Bouncing MNIST, KTH and UCF-101 suggest that Sync-DRAW is efficient in learning the spatial and temporal information of the videos and generates frames with high structural integrity, and can generate videos from simple captions on these datasets. (Accepted as oral paper in ACM-Multimedia 2017)
Abstract:The emergence of depth imaging technologies like the Microsoft Kinect has renewed interest in computational methods for gesture classification based on videos. For several years now, researchers have used the Bag-of-Features (BoF) as a primary method for generation of feature vectors from video data for recognition of gestures. However, the BoF method is a coarse representation of the information in a video, which often leads to poor similarity measures between videos. Besides, when features extracted from different spatio-temporal locations in the video are pooled to create histogram vectors in the BoF method, there is an intrinsic loss of their original locations in space and time. In this paper, we propose a new Multiresolution Match Kernel (MMK) for video classification, which can be considered as a generalization of the BoF method. We apply this procedure to hand gesture classification based on RGB-D videos of the American Sign Language(ASL) hand gestures and our results show promise and usefulness of this new method.
Abstract:The remarkable successes of deep learning models across various applications have resulted in the design of deeper networks that can solve complex problems. However, the increasing depth of such models also results in a higher storage and runtime complexity, which restricts the deployability of such very deep models on mobile and portable devices, which have limited storage and battery capacity. While many methods have been proposed for deep model compression in recent years, almost all of them have focused on reducing storage complexity. In this work, we extend the teacher-student framework for deep model compression, since it has the potential to address runtime and train time complexity too. We propose a simple methodology to include a noise-based regularizer while training the student from the teacher, which provides a healthy improvement in the performance of the student network. Our experiments on the CIFAR-10, SVHN and MNIST datasets show promising improvement, with the best performance on the CIFAR-10 dataset. We also conduct a comprehensive empirical evaluation of the proposed method under related settings on the CIFAR-10 dataset to show the promise of the proposed approach.