Abstract:There has been a growing interest in capturing and maintaining causal relationships in Neural Network (NN) models in recent years. We study causal approaches to estimate and maintain input-output attributions in NN models in this work. In particular, existing efforts in this direction assume independence among input variables (by virtue of the NN architecture), and hence study only direct causal effects. Viewing an NN as a structural causal model (SCM), we instead focus on going beyond direct effects, introduce edges among input features, and provide a simple yet effective methodology to capture and maintain direct and indirect causal effects while training an NN model. We also propose effective approximation strategies to quantify causal attributions in high dimensional data. Our wide range of experiments on synthetic and real-world datasets show that the proposed ante-hoc method learns causal attributions for both direct and indirect causal effects close to the ground truth effects.