Abstract:To improve human-preference alignment training, current research has developed numerous preference datasets consisting of preference pairs labeled as "preferred" or "dispreferred". These preference pairs are typically used to encode human preferences into a single numerical value through reward modeling, which acts as a reward signal during reinforcement learning from human feedback (RLHF). However, representing these human preferences as a numerical value complicates the analysis of these preferences and restricts their broader applications other than RLHF. In contrast, in this work, we introduce a preference representation learning task that aims to construct a richer and more structured representation of human preferences. We further develop a more generalizable framework, Learning Representations for Human Preferences via preference pairs (namely LRHP), which extends beyond traditional reward modeling to tackle this task. We verify the utility of preference representations in two downstream tasks: preference data selection and preference margin prediction. Building upon the human preferences in representations, we achieve strong performance in both tasks, significantly outperforming baselines.
Abstract:Large vision-language models (LVLMs) often fail to align with human preferences, leading to issues like generating misleading content without proper visual context (also known as hallucination). A promising solution to this problem is using human-preference alignment techniques, such as best-of-n sampling and reinforcement learning. However, these techniques face the difficulty arising from the scarcity of visual preference data, which is required to train a visual reward model (VRM). In this work, we continue the line of research. We present a Robust Visual Reward Model (RoVRM) which improves human-preference alignment for LVLMs. RoVRM leverages auxiliary textual preference data through a three-phase progressive training and optimal transport-based preference data selection to effectively mitigate the scarcity of visual preference data. We experiment with RoVRM on the commonly used vision-language tasks based on the LLaVA-1.5-7B and -13B models. Experimental results demonstrate that RoVRM consistently outperforms traditional VRMs. Furthermore, our three-phase progressive training and preference data selection approaches can yield consistent performance gains over ranking-based alignment techniques, such as direct preference optimization.
Abstract:Alignment training is crucial for enabling large language models (LLMs) to cater to human intentions and preferences. It is typically performed based on two stages with different objectives: instruction-following alignment and human-preference alignment. However, aligning LLMs with these objectives in sequence suffers from an inherent problem: the objectives may conflict, and the LLMs cannot guarantee to simultaneously align with the instructions and human preferences well. To response to these, in this work, we propose a Hybrid Alignment Training (Hbat) approach, based on alternating alignment and modified elastic weight consolidation methods. The basic idea is to alternate between different objectives during alignment training, so that better collaboration can be achieved between the two alignment tasks.We experiment with Hbat on summarization and dialogue tasks. Experimental results show that the proposed \textsc{Hbat} can significantly outperform all baselines. Notably, Hbat yields consistent performance gains over the traditional two-stage alignment training when using both proximal policy optimization and direct preference optimization.
Abstract:In this study, we reveal an in-context learning (ICL) capability of multilingual large language models (LLMs): by translating the input to several languages, we provide Parallel Input in Multiple Languages (PiM) to LLMs, which significantly enhances their comprehension abilities. To test this capability, we design extensive experiments encompassing 8 typical datasets, 7 languages and 8 state-of-the-art multilingual LLMs. Experimental results show that (1) incorporating more languages help PiM surpass the conventional ICL further; (2) even combining with the translations that are inferior to baseline performance can also help. Moreover, by examining the activated neurons in LLMs, we discover a counterintuitive but interesting phenomenon. Contrary to the common thought that PiM would activate more neurons than monolingual input to leverage knowledge learned from diverse languages, PiM actually inhibits neurons and promotes more precise neuron activation especially when more languages are added. This phenomenon aligns with the neuroscience insight about synaptic pruning, which removes less used neural connections, strengthens remainders, and then enhances brain intelligence.
Abstract:Large language models achieve state-of-the-art performance on sequence generation evaluation, but typically have a large number of parameters. This is a computational challenge as presented by applying their evaluation capability at scale. To overcome the challenge, in this paper, we propose \textbf{ECT}, an \textbf{e}valuation \textbf{c}apability \textbf{t}ransfer method, to transfer the evaluation capability from LLMs to relatively lightweight language models. Based on the proposed ECT, we learn various evaluation models from ChatGPT, and employ them as reward models to improve sequence generation models via reinforcement learning and reranking approaches. Experimental results on machine translation, text style transfer, and summarization tasks demonstrate the effectiveness of our ECT. Notably, applying the learned evaluation models to sequence generation models results in better generated sequences as evaluated by commonly used metrics and ChatGPT.
Abstract:Applying Reinforcement Learning (RL) to sequence generation models enables the direct optimization of long-term rewards (\textit{e.g.,} BLEU and human feedback), but typically requires large-scale sampling over a space of action sequences. This is a computational challenge as presented by the practice of sequence generation problems, such as machine translation, where we often deal with a large action space (\textit{e.g.,} a vocabulary) and a long action sequence (\textit{e.g.,} a translation). In this work, we introduce two-stage sampling and dynamic sampling approaches to improve the sampling efficiency during training sequence generation models via RL. We experiment with our approaches on the traditional sequence generation tasks, including machine translation and abstractive summarization. Furthermore, we evaluate our approaches in RL from human feedback (RLHF) through training a large language model using the reward model. Experimental results show that the efficient sampling-based RL, referred to as ESRL, can outperform all baselines in terms of both training efficiency and memory consumption. Notably, ESRL yields consistent performance gains over the strong REINFORCE, minimum risk training, and proximal policy optimization methods.
Abstract:8-bit integer inference, as a promising direction in reducing both the latency and storage of deep neural networks, has made great progress recently. On the other hand, previous systems still rely on 32-bit floating point for certain functions in complex models (e.g., Softmax in Transformer), and make heavy use of quantization and de-quantization. In this work, we show that after a principled modification on the Transformer architecture, dubbed Integer Transformer, an (almost) fully 8-bit integer inference algorithm Scale Propagation could be derived. De-quantization is adopted when necessary, which makes the network more efficient. Our experiments on WMT16 En<->Ro, WMT14 En<->De and En->Fr translation tasks as well as the WikiText-103 language modelling task show that the fully 8-bit Transformer system achieves comparable performance with the floating point baseline but requires nearly 4x less memory footprint.
Abstract:Neural architecture search (NAS) has advanced significantly in recent years but most NAS systems restrict search to learning architectures of a recurrent or convolutional cell. In this paper, we extend the search space of NAS. In particular, we present a general approach to learn both intra-cell and inter-cell architectures (call it ESS). For a better search result, we design a joint learning method to perform intra-cell and inter-cell NAS simultaneously. We implement our model in a differentiable architecture search system. For recurrent neural language modeling, it outperforms a strong baseline significantly on the PTB and WikiText data, with a new state-of-the-art on PTB. Moreover, the learned architectures show good transferability to other systems. E.g., they improve state-of-the-art systems on the CoNLL and WNUT named entity recognition (NER) tasks and CoNLL chunking task, indicating a promising line of research on large-scale pre-learned architectures.
Abstract:In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.
Abstract:Though early successes of Statistical Machine Translation (SMT) systems are attributed in part to the explicit modelling of the interaction between any two source and target units, e.g., alignment, the recent Neural Machine Translation (NMT) systems resort to the attention which partially encodes the interaction for efficiency. In this paper, we employ Joint Representation that fully accounts for each possible interaction. We sidestep the inefficiency issue by refining representations with the proposed efficient attention operation. The resulting Reformer models offer a new Sequence-to- Sequence modelling paradigm besides the Encoder-Decoder framework and outperform the Transformer baseline in either the small scale IWSLT14 German-English, English-German and IWSLT15 Vietnamese-English or the large scale NIST12 Chinese-English translation tasks by about 1 BLEU point.We also propose a systematic model scaling approach, allowing the Reformer model to beat the state-of-the-art Transformer in IWSLT14 German-English and NIST12 Chinese-English with about 50% fewer parameters. The code is publicly available at https://github.com/lyy1994/reformer.