Abstract:Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.
Abstract:The high incidence and mortality rates associated with respiratory diseases underscores the importance of early screening. Machine learning models can automate clinical consultations and auscultation, offering vital support in this area. However, the data involved, spanning demographics, medical history, symptoms, and respiratory audio, are heterogeneous and complex. Existing approaches are insufficient and lack generalizability, as they typically rely on limited training data, basic fusion techniques, and task-specific models. In this paper, we propose RespLLM, a novel multimodal large language model (LLM) framework that unifies text and audio representations for respiratory health prediction. RespLLM leverages the extensive prior knowledge of pretrained LLMs and enables effective audio-text fusion through cross-modal attentions. Instruction tuning is employed to integrate diverse data from multiple sources, ensuring generalizability and versatility of the model. Experiments on five real-world datasets demonstrate that RespLLM outperforms leading baselines by an average of 4.6% on trained tasks, 7.9% on unseen datasets, and facilitates zero-shot predictions for new tasks. Our work lays the foundation for multimodal models that can perceive, listen to, and understand heterogeneous data, paving the way for scalable respiratory health diagnosis.
Abstract:Interpreting electrocardiograms (ECGs) and generating comprehensive reports remain challenging tasks in cardiology, often requiring specialized expertise and significant time investment. To address these critical issues, we propose ECG-ReGen, a retrieval-based approach for ECG-to-text report generation and question answering. Our method leverages a self-supervised learning for the ECG encoder, enabling efficient similarity searches and report retrieval. By combining pre-training with dynamic retrieval and Large Language Model (LLM)-based refinement, ECG-ReGen effectively analyzes ECG data and answers related queries, with the potential of improving patient care. Experiments conducted on the PTB-XL and MIMIC-IV-ECG datasets demonstrate superior performance in both in-domain and cross-domain scenarios for report generation. Furthermore, our approach exhibits competitive performance on ECG-QA dataset compared to fully supervised methods when utilizing off-the-shelf LLMs for zero-shot question answering. This approach, effectively combining self-supervised encoder and LLMs, offers a scalable and efficient solution for accurate ECG interpretation, holding significant potential to enhance clinical decision-making.
Abstract:Respiratory audio, such as coughing and breathing sounds, has predictive power for a wide range of healthcare applications, yet is currently under-explored. The main problem for those applications arises from the difficulty in collecting large labeled task-specific data for model development. Generalizable respiratory acoustic foundation models pretrained with unlabeled data would offer appealing advantages and possibly unlock this impasse. However, given the safety-critical nature of healthcare applications, it is pivotal to also ensure openness and replicability for any proposed foundation model solution. To this end, we introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system, as the first approach answering this need. We curate large-scale respiratory audio datasets (~136K samples, 440 hours), pretrain three pioneering foundation models, and build a benchmark consisting of 19 downstream respiratory health tasks for evaluation. Our pretrained models demonstrate superior performance (against existing acoustic models pretrained with general audio on 16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory audio modalities). This highlights the great promise of respiratory acoustic foundation models and encourages more studies using OPERA as an open resource to accelerate research on respiratory audio for health. The system is accessible from https://github.com/evelyn0414/OPERA.
Abstract:Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server. However, existing FL methods still face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift, consequently hindering the performance of the global model. In response to these challenges, we propose a pioneering framework called FLea, incorporating the following key components: i) A global feature buffer that stores activation-target pairs shared from multiple clients to support local training. This design mitigates local model drift caused by the absence of certain classes; ii) A feature augmentation approach based on local and global activation mix-ups for local training. This strategy enlarges the training samples, thereby reducing the risk of local overfitting; iii) An obfuscation method to minimize the correlation between intermediate activations and the source data, enhancing the privacy of shared features. To verify the superiority of FLea, we conduct extensive experiments using a wide range of data modalities, simulating different levels of local data scarcity and label skew. The results demonstrate that FLea consistently outperforms state-of-the-art FL counterparts (among 13 of the experimented 18 settings, the improvement is over 5% while concurrently mitigating the privacy vulnerabilities associated with shared features. Code is available at https://github.com/XTxiatong/FLea.git.
Abstract:Learning a global model by abstracting the knowledge, distributed across multiple clients, without aggregating the raw data is the primary goal of Federated Learning (FL). Typically, this works in rounds alternating between parallel local training at several clients, followed by model aggregation at a server. We found that existing FL methods under-perform when local datasets are small and present severe label skew as these lead to over-fitting and local model bias. This is a realistic setting in many real-world applications. To address the problem, we propose \textit{FLea}, a unified framework that tackles over-fitting and local bias by encouraging clients to exchange privacy-protected features to aid local training. The features refer to activations from an intermediate layer of the model, which are obfuscated before being shared with other clients to protect sensitive information in the data. \textit{FLea} leverages a novel way of combining local and shared features as augmentations to enhance local model learning. Our extensive experiments demonstrate that \textit{FLea} outperforms the start-of-the-art FL methods, sharing only model parameters, by up to $17.6\%$, and FL methods that share data augmentations by up to $6.3\%$, while reducing the privacy vulnerability associated with shared data augmentations.
Abstract:Built environment supports all the daily activities and shapes our health. Leveraging informative street view imagery, previous research has established the profound correlation between the built environment and chronic, non-communicable diseases; however, predicting the exposure risk of infectious diseases remains largely unexplored. The person-to-person contacts and interactions contribute to the complexity of infectious disease, which is inherently different from non-communicable diseases. Besides, the complex relationships between street view imagery and epidemic exposure also hinder accurate predictions. To address these problems, we construct a regional mobility graph informed by the gravity model, based on which we propose a transmission-aware graph convolutional network (GCN) to capture disease transmission patterns arising from human mobility. Experiments show that the proposed model significantly outperforms baseline models by 8.54% in weighted F1, shedding light on a low-cost, scalable approach to assess epidemic exposure risks from street view imagery.
Abstract:How can we ensure that Ubiquitous Computing (UbiComp) research outcomes are both ethical and fair? While fairness in machine learning (ML) has gained traction in recent years, fairness in UbiComp remains unexplored. This workshop aims to discuss fairness in UbiComp research and its social, technical, and legal implications. From a social perspective, we will examine the relationship between fairness and UbiComp research and identify pathways to ensure that ubiquitous technologies do not cause harm or infringe on individual rights. From a technical perspective, we will initiate a discussion on data practices to develop bias mitigation approaches tailored to UbiComp research. From a legal perspective, we will examine how new policies shape our community's work and future research. We aim to foster a vibrant community centered around the topic of responsible UbiComp, while also charting a clear path for future research endeavours in this field.
Abstract:Federated learning (FL) aided health diagnostic models can incorporate data from a large number of personal edge devices (e.g., mobile phones) while keeping the data local to the originating devices, largely ensuring privacy. However, such a cross-device FL approach for health diagnostics still imposes many challenges due to both local data imbalance (as extreme as local data consists of a single disease class) and global data imbalance (the disease prevalence is generally low in a population). Since the federated server has no access to data distribution information, it is not trivial to solve the imbalance issue towards an unbiased model. In this paper, we propose FedLoss, a novel cross-device FL framework for health diagnostics. Here the federated server averages the models trained on edge devices according to the predictive loss on the local data, rather than using only the number of samples as weights. As the predictive loss better quantifies the data distribution at a device, FedLoss alleviates the impact of data imbalance. Through a real-world dataset on respiratory sound and symptom-based COVID-$19$ detection task, we validate the superiority of FedLoss. It achieves competitive COVID-$19$ detection performance compared to a centralised model with an AUC-ROC of $79\%$. It also outperforms the state-of-the-art FL baselines in sensitivity and convergence speed. Our work not only demonstrates the promise of federated COVID-$19$ detection but also paves the way to a plethora of mobile health model development in a privacy-preserving fashion.
Abstract:Context-aware decision support in the operating room can foster surgical safety and efficiency by leveraging real-time feedback from surgical workflow analysis. Most existing works recognize surgical activities at a coarse-grained level, such as phases, steps or events, leaving out fine-grained interaction details about the surgical activity; yet those are needed for more helpful AI assistance in the operating room. Recognizing surgical actions as triplets of <instrument, verb, target> combination delivers comprehensive details about the activities taking place in surgical videos. This paper presents CholecTriplet2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos. The challenge granted private access to the large-scale CholecT50 dataset, which is annotated with action triplet information. In this paper, we present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge. A total of 4 baseline methods from the challenge organizers and 19 new deep learning algorithms by competing teams are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%. This study also analyzes the significance of the results obtained by the presented approaches, performs a thorough methodological comparison between them, in-depth result analysis, and proposes a novel ensemble method for enhanced recognition. Our analysis shows that surgical workflow analysis is not yet solved, and also highlights interesting directions for future research on fine-grained surgical activity recognition which is of utmost importance for the development of AI in surgery.