Abstract:Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.
Abstract:In our era of widespread false information, human fact-checkers often face the challenge of duplicating efforts when verifying claims that may have already been addressed in other countries or languages. As false information transcends linguistic boundaries, the ability to automatically detect previously fact-checked claims across languages has become an increasingly important task. This paper presents the first comprehensive evaluation of large language models (LLMs) for multilingual previously fact-checked claim detection. We assess seven LLMs across 20 languages in both monolingual and cross-lingual settings. Our results show that while LLMs perform well for high-resource languages, they struggle with low-resource languages. Moreover, translating original texts into English proved to be beneficial for low-resource languages. These findings highlight the potential of LLMs for multilingual previously fact-checked claim detection and provide a foundation for further research on this promising application of LLMs.
Abstract:Autoregressive large language models (LLMs) exhibit impressive performance across various tasks but struggle with simple arithmetic, such as addition of two or more operands. We show that this struggle arises from LLMs' use of a simple one-digit lookahead heuristic, which works fairly well (but not perfect) for two-operand addition but fails in multi-operand cases, where the carry-over logic is more complex. Our probing experiments and digit-wise accuracy evaluation show that LLMs fail precisely where a one-digit lookahead is insufficient to account for cascading carries. We analyze the impact of tokenization strategies on arithmetic performance and show that all investigated models, regardless of tokenization, are inherently limited in the addition of multiple operands due to their reliance on a one-digit lookahead heuristic. Our findings reveal fundamental limitations that prevent LLMs from generalizing to more complex numerical reasoning.
Abstract:In this work, we reimagine classical probing to evaluate knowledge transfer from simple source to more complex target tasks. Instead of probing frozen representations from a complex source task on diverse simple target probing tasks (as usually done in probing), we explore the effectiveness of embeddings from multiple simple source tasks on a single target task. We select coreference resolution, a linguistically complex problem requiring contextual understanding, as focus target task, and test the usefulness of embeddings from comparably simpler tasks tasks such as paraphrase detection, named entity recognition, and relation extraction. Through systematic experiments, we evaluate the impact of individual and combined task embeddings. Our findings reveal that task embeddings vary significantly in utility for coreference resolution, with semantic similarity tasks (e.g., paraphrase detection) proving most beneficial. Additionally, representations from intermediate layers of fine-tuned models often outperform those from final layers. Combining embeddings from multiple tasks consistently improves performance, with attention-based aggregation yielding substantial gains. These insights shed light on relationships between task-specific representations and their adaptability to complex downstream tasks, encouraging further exploration of embedding-level task transfer.
Abstract:Counterfactual examples are widely used in natural language processing (NLP) as valuable data to improve models, and in explainable artificial intelligence (XAI) to understand model behavior. The automated generation of counterfactual examples remains a challenging task even for large language models (LLMs), despite their impressive performance on many tasks. In this paper, we first introduce ZeroCF, a faithful approach for leveraging important words derived from feature attribution methods to generate counterfactual examples in a zero-shot setting. Second, we present a new framework, FitCF, which further verifies aforementioned counterfactuals by label flip verification and then inserts them as demonstrations for few-shot prompting, outperforming two state-of-the-art baselines. Through ablation studies, we identify the importance of each of FitCF's core components in improving the quality of counterfactuals, as assessed through flip rate, perplexity, and similarity measures. Furthermore, we show the effectiveness of LIME and Integrated Gradients as backbone attribution methods for FitCF and find that the number of demonstrations has the largest effect on performance. Finally, we reveal a strong correlation between the faithfulness of feature attribution scores and the quality of generated counterfactuals.
Abstract:Contextualized embeddings based on large language models (LLMs) are available for various languages, but their coverage is often limited for lower resourced languages. Training LLMs for such languages is often difficult due to insufficient data and high computational cost. Especially for very low resource languages, static word embeddings thus still offer a viable alternative. There is, however, a notable lack of comprehensive repositories with such embeddings for diverse languages. To address this, we present LowREm, a centralized repository of static embeddings for 87 low-resource languages. We also propose a novel method to enhance GloVe-based embeddings by integrating multilingual graph knowledge, utilizing another source of knowledge. We demonstrate the superior performance of our enhanced embeddings as compared to contextualized embeddings extracted from XLM-R on sentiment analysis. Our code and data are publicly available under https://huggingface.co/DFKI.
Abstract:In the era of high performing Large Language Models, researchers have widely acknowledged that contextual word representations are one of the key drivers in achieving top performances in downstream tasks. In this work, we investigate the degree of contextualization encoded in the fine-grained sub-layer representations of a Pre-trained Language Model (PLM) by empirical experiments using linear probes. Unlike previous work, we are particularly interested in identifying the strength of contextualization across PLM sub-layer representations (i.e. Self-Attention, Feed-Forward Activation and Output sub-layers). To identify the main contributions of sub-layers to contextualisation, we first extract the sub-layer representations of polysemous words in minimally different sentence pairs, and compare how these representations change through the forward pass of the PLM network. Second, by probing on a sense identification classification task, we try to empirically localize the strength of contextualization information encoded in these sub-layer representations. With these probing experiments, we also try to gain a better understanding of the influence of context length and context richness on the degree of contextualization. Our main conclusion is cautionary: BERT demonstrates a high degree of contextualization in the top sub-layers if the word in question is in a specific position in the sentence with a shorter context window, but this does not systematically generalize across different word positions and context sizes.
Abstract:Natural language explanations (NLEs) are vital for elucidating the reasoning behind large language model (LLM) decisions. Many techniques have been developed to generate NLEs using LLMs. However, like humans, LLMs might not always produce optimal NLEs on first attempt. Inspired by human learning processes, we introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively. The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic. Cross-Refine does not require any supervised training data or additional training. We validate Cross-Refine across three NLP tasks using three state-of-the-art open-source LLMs through automatic and human evaluation. We select Self-Refine (Madaan et al., 2023) as the baseline, which only utilizes self-feedback to refine the explanations. Our findings from automatic evaluation and a user study indicate that Cross-Refine outperforms Self-Refine. Meanwhile, Cross-Refine can perform effectively with less powerful LLMs, whereas Self-Refine only yields strong results with ChatGPT. Additionally, we conduct an ablation study to assess the importance of feedback and suggestions. Both of them play an important role in refining explanations. We further evaluate Cross-Refine on a bilingual dataset in English and German.
Abstract:Prompt tuning is a modular and efficient solution for training large language models (LLMs). One of its main advantages is task modularity, making it suitable for multi-task problems. However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, by arithmetic addition of task prompt vectors from multiple tasks, we are able to outperform a state-of-the-art baseline in some cases.
Abstract:Prompt injection (both direct and indirect) and jailbreaking are now recognized as significant issues for large language models (LLMs), particularly due to their potential for harm in application-integrated contexts. This extended abstract explores a novel approach to protecting LLMs from such attacks, termed "soft begging." This method involves training soft prompts to counteract the effects of corrupted prompts on the LLM's output. We provide an overview of prompt injections and jailbreaking, introduce the theoretical basis of the "soft begging" technique, and discuss an evaluation of its effectiveness.